Researchers discover a new gene involved in obesity

June 20, 2013, Centro Nacional de Investigaciones Oncologicas (CNIO)

The discovery of an unexpected function for a gene that was associated to another process in the organism might be a solution in search of a problem, a clue to unsuspected connections. That is what has happened with RAP1, a gene that protects telomeres— the ends of chromosomes—after researchers from the Spanish National Cancer Research Centre (CNIO) surprisingly discovered its key role in obesity.

"We still don't know what to attach to it, but it is at the very least interesting that a telomere gene is related to ", says Maria Blasco, CNIO director and co-author of the study published today in the journal Cell Reports.

RAP1 forms part of the shelterin complex, a group of proteins that make up the protective hood of —the DNA sequence at the ends of that shortens with each and thus measures the ageing of the organism. There are six shelterins, and CNIO's Telomeres & Telomerase Group, which studies them in-depth, has discovered that RAP1, contrary to the rest, is not essential for the survival of the organism; but that does not mean RAP1 is not important. The reverse is rather the case: when comparing the genomes of different species, it can be observed that RAP1 is the most conserved shelterin of all. Despite the long history of evolutionary changes, RAP1 has not changed; it is present even in yeast. This normally implies an important role in the organism, but which one?

CNIO researchers had discovered that RAP1, in addition to being located in telomeres, is also present in the rest of the chromosome; they supposed it acts regulating the action of other genes. In order to analyse this other potential function, and its importance in the organism, CNIO researchers created a lineage of mice without RAP1 and, to their surprise, discovered a model for obesity.

MICE LACKING RAP1 GAIN MORE WEIGHT

"Mice—especially female mice—without RAP1 do not eat more, but do gain weight. They suffer from metabolic syndrome, accumulate abdominal fat and present high glucose and cholesterol levels, amongst other symptoms", says Paula Martínez, first-author of the study.

The reason is that RAP1 plays an important role in the regulation of genes involved in metabolism. In particular, researchers have discovered that it acts on the same signalling pathway mediated by another protein: PPAR- gamma (PPAR-γ). In fact, PPAR-γ deficient mice suffer from a type of obesity "surprisingly similar" to that seen in mice without RAP1.

The next step in the research will be to study if RAP1 also plays a role in human obesity. "This discovery adds an element to the obesity equation, and opens up a possible new link between metabolic dysfunction and ageing, via a present in telomeres", says Blasco.

Explore further: Psychiatric disorders linked to a protein involved in the formation of long-term memories

More information: RAP1 Protects from Obesity through Its Extratelomeric Role Regulating Gene Expression. Paula Martínez, Gonzalo Gómez-López, Fernando García, Evi Mercken, Sarah Mitchell, Juana M. Flores, Rafael de Cabo, Maria A. Blasco. Cell Reports (2013). doi: 10.1016/j.celrep.2013.05.030

Related Stories

Psychiatric disorders linked to a protein involved in the formation of long-term memories

June 17, 2013
Researchers have discovered a pathway by which the brain controls a molecule critical to forming long-term memories and connected with bipolar disorder and schizophrenia.

Researchers identify a new gene that is essential for nuclear reprogramming

June 5, 2013
Researchers are still fascinated by the idea of the possibility of reprogramming the cells of any tissue, turning them into cells with the capacity to differentiate into cells of a completely different type— pluripotent ...

Caloric restriction has a protective effect on chromosomes

January 23, 2013
One of the indicators of a cell's health is the state of its DNA and containers—the chromosomes—so when these fuse together or suffer anomalies, they can become the source of illnesses like cancer and/or ageing processes.

Rap1 plays role in smooth muscle cell vasoconstriction

August 6, 2012
(HealthDay) -- The Ras-related small GTPase, Rap1, couples to RhoA, and is involved in relocalization of G protein-coupled α2C-adrenoceptors (α2CARs) in smooth muscle cells derived from human dermal arterioles (microVSM), ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.