Gene variant may provide novel therapy for several cancer types

June 7, 2013

(Medical Xpress)—A novel gene variant found in human and animal tissue may be a promising treatment for cancer, including breast and brain cancer, according to scientists from the Icahn School of Medicine at Mount Sinai. The variant, called PTEN-long, may contribute to a cell's healthy function and also suppress tumor cell development. This landmark study is published in the June 6, 2013 issue of the journal Science.

Ramon Parsons, MD, PhD, Professor and Chair of led the team that discovered a mutation in the PTEN, which has subsequently been recognized as the second most common mutation in cancer, especially in breast, prostate, and brain cancers. PTEN encodes a 403 amino acid lipid phosphatase protein that is critical to cellular growth, proliferation, and survival. Genetic inactivation of PTEN causes tumor development.

In the current study, Dr. Parsons and his team analyzed human cells and discovered a PTEN variant that has an additional protein sequence and is 43 percent longer than normal PTEN. They called this new variant PTEN-Long. Like PTEN, the long form has the same enzymatic activity, but unlike PTEN, it is secreted by the cell and can enter other cells, indicating that the added acts as a delivery system for the tumor suppressor gene.

"This study culminates more than a decade of research that began soon after we learned the therapeutic potential of PTEN and the PI3K pathway," said Dr. Parsons. "We are excited about the potential of PTEN-Long as a therapy for multiple ."

Using human breast and brain tumor cells that lacked PTEN and PTEN-Long, the research team introduced and overexpressed PTEN-Long and PTEN into the cells. They found that, similar to PTEN, PTEN-Long decreased the signaling activity on the PI3K pathway, thus reducing . They also found that PTEN-Long was reduced in tissue compared to healthy .

To test the therapeutic potential of PTEN-Long, Dr. Parsons and his team injected mice with tumor cells, then administered PTEN-Long or a control preparation to the mice. For one of their tumor models, after five days of treatment, the tumors disappeared completely. The authors conclude that PTEN-Long alters signaling on the PI3K pathway to inhibit tumor growth and that its ability to enter other cells is critical to this process. As insulin operates on the PI3K pathway as well, the research team also noticed a brief increase in glucose concentration in the PTEN-Long treated mice.

"These findings indicate that PTEN-Long may contribute to cell homeostasis and suppression of cancer," said Dr. Parsons. "This gene variant has significant potential as a protein-based therapy to treat cancer, and may have implications in diseases such as diabetes."

Next, Dr. Parsons plans to study the normal functions of PTEN-Long, how tumors become resistant to it, what happens when it is missing, and how it can be used as a tool for therapy.

Explore further: COUP-TFII sparks prostate cancer progression

More information: "A Secreted PTEN Phosphatase that Enters Cells to Alter Signaling and Survival" www.sciencemag.org/content/ear … 6/05/science.1234907

Related Stories

COUP-TFII sparks prostate cancer progression

November 28, 2012
Prostate cancer presents a dilemma for patients and the physicians who treat them. Which cancers are essentially indolent and present no risk and which are life threatening? Which can be watched and which need aggressive ...

Therapy exploits 'addiction' of leukemia cells

April 16, 2012
A new study describes a therapeutic approach to halting cancer progression by exploiting a previously unrecognized "addiction" of leukemia cells to specific signaling molecules. The research, published by Cell Press online ...

Newly identified tumor suppressor provides therapeutic target for prostate cancer

April 1, 2013
Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have identified how an enzyme called PKCζ suppresses prostate tumor formation. The finding, which also describes a molecular chain of events that ...

Researchers narrow the search for biomarkers of drug resistance in head and neck cancer patients

May 31, 2013
Researchers from Fox Chase Cancer Center will present data at the 49th Annual Meeting of the American Society of Clinical Oncology on Saturday, June 1, which shows the discovery of potential biomarkers that may be used to ...

New research sheds light on gene destruction linked to aggressive prostate cancer

January 26, 2012
Researchers at Queen's University in Kingston, Canada have identified a possible cause for the loss of a tumour suppressor gene (known as PTEN) that can lead to the development of more aggressive forms of prostate cancer.

Recommended for you

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

Research finds that zinc binding is vital for regulating pH levels in the brain

October 17, 2017
Researchers in Oslo, Norway, have discovered that zinc binding plays an important role in the sensing and regulation of pH in the human brain. The findings come as one of the first studies that directly link zinc binding ...

A new compound targets energy generation, thereby killing metastatic cells

October 17, 2017
Cancer can most often be successfully treated when confined to one organ. But a greater challenge lies in treating cancer that has metastasized, or spread, from the primary tumor throughout the patient's body. Although immunotherapy ...

Researchers find factor that delays wound healing

October 17, 2017
New research carried out at The University of Manchester has identified a bacterium—normally present on the skin that causes poor wound healing in certain conditions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.