Research reprograms future of kidney health

University of Queensland researchers have reprogrammed adult kidney cells to act as stem cells to repair damaged kidneys.

The breakthrough is a vital step in the development of improved treatments for , which accounts for 15 per cent of all hospitalisations in Australia.

Professor Melissa Little, from UQ's Institute for (IMB), led a team that identified a set of key genes that can be used to transform adult .

"We determined that six key genes can prompt some types of adult kidney cells to regress to an earlier and act like the precursors to the cells of the nephron," Professor Little said.

"Nephrons filter the blood as it passes through the kidneys, with damage to nephrons causing kidney disease," Professor Little said.

"All the nephrons are formed before birth and people with fewer nephrons are at higher risk of kidney disease.

"By forcing to act like early nephron cells, we have potentially found a way to trigger the growth of new filters."

Professor Little said the only treatments for end stage kidney disease were transplantation or dialysis.

"Donated kidneys are rare and dialysis is costly and does not give patients a high quality of life," Professor Little said.

"This discovery is the first of its kind and offers hope to patients with chronic kidney disease.

"If we can find a way to provide new nephrons to an adult or increase nephron numbers in babies at birth, we could potentially reduce the risk of ."

This landmark discovery was published today (10am AEST 14/06/13) in the Journal of the American Society of Nephrology, the world's leading nephrology journal.

The cost of treating end-stage kidney disease from 2009-2020 estimated to be around $12 billion to the Australian Government1.

In 2010, 2257 new patients commenced treatment for end-stage kidney failure2 in Australia, and tragically, 1574 Australians died during kidney replacement therapy3.

Professor Little said there was still more work to be done to encourage these reprogrammed early nephron cells to function and integrate.

"While this is a beginning, we hope it will inspire industry leaders and researchers around the world to invest further in cellular and bioengineering approaches to kidney repair and regeneration," Professor Little said.


Explore further

Good kidney health begins before birth

Citation: Research reprograms future of kidney health (2013, June 14) retrieved 17 July 2019 from https://medicalxpress.com/news/2013-06-reprograms-future-kidney-health.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more