Recently discovered stem cell population could one day provide useful source material for kidney repair

November 7, 2012
By the time kidney development is complete in mice, individual Lgr5+ve cells have developed into tubules (blue) that contribute to nephron formation. Credit: 2012 Elsevier

Within every human kidney, millions of filtration units known as nephrons are hard at work clearing metabolic waste products from the blood. Given the dirty work they perform, one might expect that the cells composing the nephrons undergo routine self-replacement, but nephrons retain very limited regenerative capabilities and essentially shut down when those limits are exceeded—a potential prelude to organ failure.

"Identification of stem cells in the kidney is of paramount importance if we are to better understand their contribution to and harness their potential," says Nick Barker of the A*STAR Institute of Medical Biology, Singapore. Barker's team has now made important progress towards this goal, identifying cells that appear to be critical for several structures within the mammalian nephron.

Previous studies have revealed the general cell pool from which these structures emerge, but not the specific cell subsets within that pool that directly contribute to nephron formation. Barker and colleagues were therefore interested in identifying specific proteins that might 'mark' such cells. Since his team had recently identified a gene called Lgr5 as a marker for key stem cell pools in several other major , they attempted to determine whether this same gene may also be relevant in the early stages of kidney formation.

Nephron development begins in the late stages in and proceeds until shortly after birth. Barker and co-workers examined patterns of Lgr5 expression during that time-span in mice. This revealed the existence of a stem-like population of Lgr-positive (Lgr5+ve) epithelial cells localized within primitive nephron precursor structures. The researchers subsequently genetically engineered various strains of mice for a series of 'lineage tracing' experiments, wherein a cell's expression of a gene of interest, such as Lgr5, switches on an indicator gene that will also remain active in that cell's descendants, enabling generation of a visible cellular family tree.

These labeling studies allowed Barker and co-workers to monitor Lgr5+ve cells as they participated in the formation of nephron tubules during kidney development (see image). "We succeeded in demonstrating that these were indeed multipotent, self-renewing stem cells responsible for generating part of the nephron blood filtration unit," says Barker.

Barker is hopeful that these recently discovered stem cells might provide valuable seeds for kidney regeneration in the clinic. "We could try and grow new nephrons in the culture dish or expand these for use in transplantation into damaged kidneys," he says.

Explore further: Clues found to way embryonic kidney maintains its fleeting stem cells

More information: Barker, N., Rookmaaker, M. B., Kujala, P., Ng, A., Leushacke, M., Snippert, H. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Reports 2, 540–552 (2012). www.cell.com/cell-reports/abst … -1247%2812%2900258-6

Related Stories

Clues found to way embryonic kidney maintains its fleeting stem cells

June 11, 2012
Studying mice and humans, researchers at Washington University School of Medicine in St. Louis and their collaborators in Paris have identified two proteins that are required to maintain a supply of stem cells in the developing ...

Kidney damage and high blood pressure

September 22, 2011
The kidney performs several vital functions. It filters blood, removes waste products from the body, balances the body's fluids, and releases hormones that regulate blood pressure. A number of diseases and conditions can ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.