Recently discovered stem cell population could one day provide useful source material for kidney repair

November 7, 2012, Agency for Science, Technology and Research (A*STAR), Singapore
By the time kidney development is complete in mice, individual Lgr5+ve cells have developed into tubules (blue) that contribute to nephron formation. Credit: 2012 Elsevier

Within every human kidney, millions of filtration units known as nephrons are hard at work clearing metabolic waste products from the blood. Given the dirty work they perform, one might expect that the cells composing the nephrons undergo routine self-replacement, but nephrons retain very limited regenerative capabilities and essentially shut down when those limits are exceeded—a potential prelude to organ failure.

"Identification of stem cells in the kidney is of paramount importance if we are to better understand their contribution to and harness their potential," says Nick Barker of the A*STAR Institute of Medical Biology, Singapore. Barker's team has now made important progress towards this goal, identifying cells that appear to be critical for several structures within the mammalian nephron.

Previous studies have revealed the general cell pool from which these structures emerge, but not the specific cell subsets within that pool that directly contribute to nephron formation. Barker and colleagues were therefore interested in identifying specific proteins that might 'mark' such cells. Since his team had recently identified a gene called Lgr5 as a marker for key stem cell pools in several other major , they attempted to determine whether this same gene may also be relevant in the early stages of kidney formation.

Nephron development begins in the late stages in and proceeds until shortly after birth. Barker and co-workers examined patterns of Lgr5 expression during that time-span in mice. This revealed the existence of a stem-like population of Lgr-positive (Lgr5+ve) epithelial cells localized within primitive nephron precursor structures. The researchers subsequently genetically engineered various strains of mice for a series of 'lineage tracing' experiments, wherein a cell's expression of a gene of interest, such as Lgr5, switches on an indicator gene that will also remain active in that cell's descendants, enabling generation of a visible cellular family tree.

These labeling studies allowed Barker and co-workers to monitor Lgr5+ve cells as they participated in the formation of nephron tubules during kidney development (see image). "We succeeded in demonstrating that these were indeed multipotent, self-renewing stem cells responsible for generating part of the nephron blood filtration unit," says Barker.

Barker is hopeful that these recently discovered stem cells might provide valuable seeds for kidney regeneration in the clinic. "We could try and grow new nephrons in the culture dish or expand these for use in transplantation into damaged kidneys," he says.

Explore further: Clues found to way embryonic kidney maintains its fleeting stem cells

More information: Barker, N., Rookmaaker, M. B., Kujala, P., Ng, A., Leushacke, M., Snippert, H. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Reports 2, 540–552 (2012). www.cell.com/cell-reports/abst … -1247%2812%2900258-6

Related Stories

Clues found to way embryonic kidney maintains its fleeting stem cells

June 11, 2012
Studying mice and humans, researchers at Washington University School of Medicine in St. Louis and their collaborators in Paris have identified two proteins that are required to maintain a supply of stem cells in the developing ...

Kidney damage and high blood pressure

September 22, 2011
The kidney performs several vital functions. It filters blood, removes waste products from the body, balances the body's fluids, and releases hormones that regulate blood pressure. A number of diseases and conditions can ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.