Researchers target HER1 receptor for peptide cancer vaccine, therapeutic agents

July 24, 2013

Small proteins called peptides that consist of 10 to 50 amino acids are being studied as cancer vaccines and as possibly safer, more effective and less costly alternatives to the monoclonal-antibody-based drugs and small-molecule inhibitors now used to treat many malignancies.

Researchers at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) have identified two regions on the HER1/EGFR receptor, a protein important for -cell growth and metastasis and for poor patient survival, as targets for peptide agents.

The protrudes from the surface of in abnormally high numbers. It is activated by growth factors in the blood and released by other cells in the tumor, stimulating tumor growth.

"Our findings could lead to novel peptide vaccines and mimetic inhibitors that target HER1 in tumors of the breast, lung, colon and head and neck, and that overcome many of the significant shortcomings of antibody-based drugs such as cetuximab," says principal investigator Pravin Kaumaya, PhD, director of the division of vaccine development at the OSUCCC - James.

"Such peptide agents might enable the development of combination immunotherapies using either HER2 vaccines or VEGF therapy that avoid the mechanisms of resistance or secondary treatment failures sometimes experienced with ," says Kaumaya, who is also professor of , of molecular and cellular biochemistry, and of microbiology at Ohio State.

HER1 is a member of the epithelial growth factor (EGF) family of cell-surface receptors, which includes the HER2 receptor. These receptors play a central role in the development of a variety of human cancers, including certain breast cancers, lung cancer, colorectal and head and neck cancers.

Kaumaya and his colleagues evaluated three sequences of peptides to determine which were the most specific and immunogenic (i.e., raised the strongest immune response in test animals), and therefore were best suited for use as vaccines or therapeutics. The three sequences, or epitopes, were based on the site of contact between HER1 and the growth factor that normally binds with it, epithelial growth factor (EGF). Key technical findings included:

  • Two of the sequences (382-410 and 418-435) were identified as best for use as cancer therapy or a cancer vaccine;
  • The 382-410 epitope overlaps the binding site of cetuximab, an antibody agent that inhibits HER1 binding; however, the 418-435 epitope significantly inhibited tumor growth in transplantable breast and lung cancer models;
  • The vaccine constructs were highly immunogenic and established immunological memory in a rabbit model. "Overall," Kaumaya says, "our results show that the 418-435 epitope has great potential for use as a vaccine or treatment option for HER1-expressing cancers."

The study is published in the Journal of Immunology.

Explore further: Combination peptide therapies might offer more effective, less toxic cancer treatment

More information: www.jimmunol.org/content/191/1/217.abstract

Related Stories

Combination peptide therapies might offer more effective, less toxic cancer treatment

August 16, 2012
Two studies suggest that two peptide agents used either together or individually with a low-dose of a standard chemotherapy drug might offer more effective cancer therapy than current standard single-drug treatments.

Study shows how the Nanog protein promotes growth of head and neck cancer

June 18, 2013
A study led by researchers at The Ohio State University Comprehensive Cancer Center-– Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC–James) has identified a biochemical pathway in cancer ...

Nano drug crosses blood-brain tumor barrier, targets brain tumor cells and blood vessels

July 17, 2013
(Phys.org) —An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier and kill tumor cells and block the growth of tumor blood vessels, according to a recent study led ...

New agent might control breast-cancer growth and spread

April 22, 2013
A new study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) suggests that an unusual experimental ...

Novel monoclonal antibody inhibits tumor growth in breast cancer and angiosarcoma

April 19, 2013
A monoclonal antibody targeting a protein known as SFPR2 has been shown by researchers at the University of North Carolina to inhibit tumor growth in pre-clinical models of breast cancer and angiosarcoma.

Recommended for you

Immune system can be modulated by targeted manipulation of cell metabolism

August 21, 2017
In its attempt to fight a serious bacterial infection, caused by listeria, for example, the immune system can become so over-activated that the resulting inflammatory response and its consequences can quickly lead to death. ...

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.