Changes in hyaluronan metabolism—a key factor in the adaptation of keratinocytes to radiation injury

July 2, 2013

As the outermost layer of skin, epidermis is crucial in forming a permeability barrier and protection against various environmental agents. Thus, investigating the biology of its most important cell type, the keratinocyte, is key to understanding the effects of solar ultraviolet radiation in skin, and helps design effective means of protection against excessive exposure. It has already previously been shown with both cell culture and in vivo animal models that UV irradiation increases the expression of hyaluronan, which is an important carbohydrate of the extracellular matrix. Hyaluronan is also clearly increased in tissue sections from early stage squamous cell carcinomas, one important risk factor of which is exposure to UV radiation.

Hyaluronan metabolism in cells and tissues has long been a special area of interest in the research group of Professors Raija and Markku Tammi at the Institute of Biomedicine, University of Eastern Finland. One important and focus in these studies has been the skin. In a recent paper published in The Journal of Biological Chemistry, the group demonstrated that already fairly low doses of UVB activate the accumulation and degradation of . This occurs in both simple monolayer cultures of keratinocytes and a stratified, three-dimensional model that mimics normal skin epidermis. As intracellular signalling pathways are activated, the hyaluronan producing enzymes (Has1-3) and hyaluronan synthesis are upregulated. Particularly, it was shown that Has1 and Has2 are regulated by the MAP kinase p38, and Has3 by the calcium-dependent protein kinase CaMKII.

Since hyaluronan content and the absolute and relative quantities and activity of the hyaluronan synthases depend on the tissue context and physiological conditions, it's crucial to understand the underlying regulatory mechanisms. In this study, the significantly upregulated hyaluronan metabolism in the keratinocytes seemed to be dependent specifically on the Has3 enzyme. Blocking its expression with a specific siRNA reversed the UVB-induced hyaluronan production nearly to the level of the control cells. The results thus strongly indicate that epidermal keratinocytes exposed to UVB specifically activate their hyaluronan synthesis by regulating the HAS-enzymes via at least two different signalling pathways. This may be one mode for the cells to adapt to radiation damage.

Even though more research is warranted, the new data further our understanding about the significance of hyaluronan for keratinocyte function under environmental stress. This activation of hyaluronan metabolism after excessive UVB exposure may also prove to be a target for regulation when trying to control and understand tissue malignancy and pre-cancerous alterations.

Explore further: Cell sugar concentrations affect hyaluronan production and cancer growth

More information: Rauhala, L. et al. Low Dose Ultraviolet B Irradiation Increases Hyaluronan Synthesis in Epidermal Keratinocytes via Sequential Induction of Hyaluronan Synthases Has1-3 Mediated by p38 and Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) Signaling, J. Biol. Chem. 2013 288: 17999-18012. First Published on May 3, 2013. doi:10.1074/jbc.M113.472530

Related Stories

Cell sugar concentrations affect hyaluronan production and cancer growth

February 27, 2013
According to a recent University of Eastern Finland (UEF) study, elevated cell sugar concentrations increase the production of hyaluronan which, in turn, promotes cancer growth. Regulating the production of hyaluronan may ...

Researchers learn how lung fibrosis begins and could be treated

June 27, 2011
An invasive cell that leads to fibrosis of the lungs may be stopped by cutting off its supply of sugar, according to researchers at Duke University Medical Center.

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.