Pressurized virus blasts its infectious DNA into human cells

July 24, 2013

The virus that causes those painful lip blisters known as cold sores has an internal pressure eight times higher than a car tire, and uses it to literally blast its infectious DNA into human cells, scientists are reporting in a new study. Discovery of the pressure-driven infection mechanism—the first in a human virus—opens the door to new treatments for viral infections, they add in a study in the Journal of the American Chemical Society.

Alex Evilevitch and colleagues point out that the viruses responsible for influenza, AIDS and other infections that affect millions of people annually are quick to develop resistance to drugs that target . Through , these proteins can quickly disguise themselves and evade anti-viral drugs. That has led to a search for vulnerabilities that don't involve viral proteins. Evilevitch's team looked at the pressure inside the 1 (HSV-1), the virus that causes cold sores.

They describe how HSV-1 enters cells, docks with portals on the nucleus and injects DNA with high pressure caused by tight packing of the capsid, the tough shell that houses the viral genome. Researchers already knew that several viruses that infect bacteria, called bacteriophages, use the same high-pressure mechanism to shoot their DNA into bacteria nuclei. Evilevitch and colleagues conclude that evolution has preserved this effective technique as a key step in viral infection—making it a desirable target for future treatments to defeat HSV-1 and other viruses that work the same way. The same mechanism exists in eight related viruses, including those responsible for mononucleosis and chickenpox in children, and shingles in adults. Drugs that interfere with it thus could limit "the potential for development of drug resistance that can occur due to rapid adaptive mutations of viral genomes," the scientists state.

Explore further: Biophysicist obtains first experimental evidence of pressure inside the herpes virus

More information: J. Am. Chem. Soc., Article ASAP DOI: 10.1021/ja404008r

Related Stories

Biophysicist obtains first experimental evidence of pressure inside the herpes virus

July 24, 2013
Herpes viruses are like tiny powder kegs waiting to explode. For more than 20 years scientists suspected that herpes viruses were packaged so full of genetic material that they built up an internal pressure so strong it could ...

Herpes research turns up genetic combatant

July 18, 2013
(Medical Xpress)—A molecule that could potentially be used to fight herpes simplex virus (HSV-1) has been discovered by Curtin University scientists.

Study reveals new approach for stopping herpes infections

March 25, 2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a novel strategy for preventing infections due to the highly common herpes simplex viruses, the microbes responsible for causing genital ...

Researchers identify vulnerabilities of the deadly Ebola virus

July 23, 2013
Disabling a protein in Ebola virus cells can stop the virus from replicating and infecting the host, according to researchers from the Icahn School of Medicine at Mount Sinai. The data are published in July in the journal ...

Researchers identify unexpected bottleneck in the spread of herpes simplex virus

November 5, 2012
New research suggests that just one or two individual herpes virus particles attack a skin cell in the first stage of an outbreak, resulting in a bottleneck in which the infection may be vulnerable to medical treatment.

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.