Sugar coating reveals black death

July 17, 2013

Even today, the lives of humans and animals are claimed by plague. A new antibody-based detection method can be used to reliably and sensitively identify plague in patient serum and other biological samples. The antibody specifically recognizes a particular carbohydrate structure found on the cell surfaces of the bacterium that causes plague, as reported by German researchers in the journal Angewandte Chemie.

"Black death" took the lives of over 200 million humans over the course of three in the last 1500 years. More recently, cases of plague have been detected in Africa and Asia. Because of the high danger of transmission and the severity of the infection, Yersinia pestis, the pathogen behind the plague, is classified as a category A . When inhaled as an aerosol it causes pneumonic plague, which usually results in death if it is not treated fast. Rapid and reliable diagnosis is thus critical.

"Currently, Y. pestis is detected by based assays or traditional phenotyping," explains Peter Seeberger of the Max Planck Institute of Colloids and Interfaces in Potsdam. "These methods of detection are reliable, but they are also often complex, expensive, and slow." The recognition of by antibodies is a highly promising and less complicated alternative method for the detection of plague, but it has a high failure rate and low selectivity with regard to related strains of bacteria.

Seeberger and his team have now found a way around this problem: Gram-negative bacteria like Y. pestis have molecules called lipopolysaccharides (LPSs), made of fat and carbohydrate components, on their outer cell membranes. "The inner core of the Yersinia LPS has a unique structure that differs from that of other Gram-negative bacteria," says Seeberger. "This could be a suitable region for detection by means of specific antibodies for rapid point-of-care diagnosis."

Because isolation of Y. pestis LPS is a laborious undertaking, the researchers chose to synthetically produce one typical motif from the molecule, a segment consisting of three sugar molecules, each of which has a framework of seven carbon atoms. The researchers attached these segments, called triheptoses, to diphtherietoxoid CRM197, which acts as a carrier protein. This protein is a typical component of licensed vaccine formulations and triggers the formation of antibodies. The researchers immunized mice and isolated antibodies from their blood.

Various immunoassays demonstrated that the resulting antibodies detect the plague pathogen with high selectivity and sensitivity, and selectively differentiate between Y. pestis and other Gram-negative bacteria. The researchers hope to be able to use this to develop applications for patient diagnostics. The development of corresponding tests is the focus of their current research.

Explore further: New discovery in battle against plague and bacterial pneumonias

More information: Angewandte Chemie International Edition, DOI 10.1002/anie.201301633

Related Stories

New discovery in battle against plague and bacterial pneumonias

June 27, 2011
Researchers from the Smiley lab at the Trudeau Institute have now identified a single component of the plague causing bacterium that can be used as a vaccine. This single "subunit" could potentially be used to create a safer ...

US approves new treatment for ancient plague

April 27, 2012
Hardly anyone succumbs to the bubonic plague these days, but US health authorities on Friday approved a new treatment for it and other forms of the potentially deadly bacterial infection.

Scientists confirm Justinianic Plague caused by bacterium Yersinia pestis

May 10, 2013
(Medical Xpress)—From the several pandemics generally called 'pestilences' three are historically recognized as due to plague, but only for the third pandemic of the 19th-21st centuries AD there were microbiological evidences ...

Recommended for you

Co-infection with two common gut pathogens worsens malnutrition in mice

July 27, 2017
Two gut pathogens commonly found in malnourished children combine to worsen malnutrition and impair growth in laboratory mice, according to new research published in PLOS Pathogens.

Finish your antibiotics course? Maybe not, experts say

July 27, 2017
British disease experts on Thursday suggested doing away with the "incorrect" advice to always finish a course of antibiotics, saying the approach was fuelling the spread of drug resistance.

Phase 3 trial confirms superiority of tocilizumab to steroids for giant cell arteritis

July 26, 2017
A phase 3 clinical trial has confirmed that regular treatment with tocilizumab, an inhibitor of interleukin-6, successfully reduced both symptoms of and the need for high-dose steroid treatment for giant cell arteritis, the ...

A large-scale 'germ trap' solution for hospitals

July 26, 2017
When an infectious airborne illness strikes, some hospitals use negative pressure rooms to isolate and treat patients. These rooms use ventilation controls to keep germ-filled air contained rather than letting it circulate ...

Researchers report new system to study chronic hepatitis B

July 25, 2017
Scientists from Princeton University's Department of Molecular Biology have successfully tested a cell-culture system that will allow researchers to perform laboratory-based studies of long-term hepatitis B virus (HBV) infections. ...

Male hepatitis B patients suffer worse liver ailments, regardless of lifestyle

July 25, 2017
Why men with hepatitis B remain more than twice as likely to develop severe liver disease than women remains a mystery, even after a study led by a recent Drexel University graduate took lifestyle choices and environments ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.