Antisense oligoneucleotide corrects striatal transcriptional abnormalities and protects function in HD mice

August 26, 2013, IOS Press

Findings from postmortem studies of the brains of Huntington's Disease (HD) patients suggest that transcriptional dysregulation may be an early step in the pathogenesis of HD before symptoms appear. Other studies report transcriptional alterations in the brains of some mouse models of HD. A new study has found transcriptional changes in mouse striatum which correlate with progressive motor and psychiatric deficits and, most importantly, reports for the first time, that an antisense oligonucleotide (ASO) may be used therapeutically to both correct striatal transcriptional abnormalities and improve motor and behavioral problems. The article is published in the latest issue of the Journal of Huntington's Disease.

"Down regulation of the expression of key molecules at the mRNA level could well be one of the underlying mechanisms leading to in HD," says Lisa M. Stanek, PhD, of Genzyme Corporation's Rare Disease Unit, Framingham, MA. "The data presented here provide strong evidence that transcriptional correction has great potential as a novel therapeutic biomarker for HD."

Huntington's disease (HD) is an inherited progressive neurological disorder for which there is presently no cure. It is caused by a dominant mutation in the HD gene leading to expression of mutant huntingtin (HTT) protein. Expression of mutant HTT causes subtle changes in , which ultimately results in jerking, uncontrollable movements, progressive psychiatric difficulties, and loss of .

The current study focuses on what is happening early in the disease process before symptoms or even neuropathological changes are apparent. The authors believe that mutant HTT may be disrupting normal transcriptional processes in susceptible neurons. In genetics, transcription refers to the process by which genetic information is copied from DNA to RNA, resulting in formation of a specific protein.

The investigators used the YAC 128 mouse HD model, which mimics many of the pathologic hallmarks of human HD. These include age-related loss of brain mass and a regionally distinct pattern of mutant HTT accumulation.

They found that levels of several striatal mRNAs (DARPP-32, DIR, D2R, Enk and CB1) progressively decreased with age in the YAC128 mice but no age-related changes were seen in the controls. Significant differences between the groups were found at 9 and 12 months. "Transcriptional in the YAC128 HD mouse does not appear to be a phenomenon of accelerated aging but likely of the disease process," says Dr. Stanek.

Investigators focused on whether an ASO directed against mutant HTT mRNA could be an effective therapeutic strategy. ASO or saline was administered directly into the CNS via an intraventricular cannula for two weeks using an osmotic mini pump. After a two-week recovery, the mice were tested on an accelerating rotarod apparatus to measure their motor coordination and motor learning, and then on the Porsolt swim test which is used to assess depression in rodents. Two to four months after ASO treatment began, ASO-treated YAC128 mice continued to perform at the same level as saline-treated wild type controls, while age-matched saline-treated YAC128 mice performed significantly worse. In other words, the ASO treatment prevented a decline in motor coordination. Similarly, the ASO treatment lessened the onset of depressive behavior, as measured by immobility during the swim test, in these HD mutant mice.

When the mouse brains were analyzed, the ASO-treated YAC128 mice showed a 30% reduction in mutant HTT mRNA levels and significant reduction in mutant HTT protein levels four months after the start of ASO treatment. Thus, the study showed a correlation between the correction of transcriptional abnormalities and functional improvement.

Further experimentation focused on the effect of ASO treatment on specific striatal-enriched transcripts in six-month old YAC128 and control mice. These results showed that "decreasing mutant HTT expression using an ASO directed specifically against human mutant HTT in YAC 128 mice significantly corrected the transcriptional profiles of DARPP32, enkephalin and CB1. D1 and D2 receptor levels also showed a trend towards improvement following ASO treatment," says Dr. Stanek.

The authors suggest that monitoring transcriptional changes could serve as a powerful tool for clinicians to follow HD progression and treatment. Since taking samples from human brain is not possible, alternative measures, such as changes in the content of mRNA or proteins in peripheral tissues or visualizing dysregulated receptors in brain using advanced neuroimaging techniques, may be developed as useful transcriptional biomarkers.

Explore further: Immune cell migration is impeded in Huntington's disease

More information: Stanek, L. et al. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease, Journal of Huntington's Disease, Volume 2/Issue 2. DOI: 10.3233/JHD-130057

Related Stories

Immune cell migration is impeded in Huntington's disease

November 19, 2012
Huntington disease (HD) is an incurable neurodegenerative disease caused by a mutation in the huntingtin gene (htt). Though most of the symptoms of HD are neurological, the mutant HTT protein is expressed in non-neural cells ...

Cell loss in the brain relates to variations in individual symptoms in Huntington's disease

January 7, 2013
Scientists have wrestled to understand why Huntington's disease, which is caused by a single gene mutation, can produce such variable symptoms. An authoritative review by a group of leading experts summarizes the progress ...

Enzyme inhibition protects against Huntington's disease damage in two animal models

November 29, 2012
Treatment with a novel agent that inhibits the activity of SIRT2, an enzyme that regulates many important cellular functions, reduced neurological damage, slowed the loss of motor function and extended survival in two animal ...

New insight into the cellular defects in Huntington's disease

October 10, 2011
Huntington disease is a devastating neurogenerative disorder that causes a progressive loss of functional capacity and reduced life span. It is an inherited condition caused by a mutant HTT gene. Although this has been known ...

Large animal models of Huntington's disease offer new and promising research options

April 22, 2013
Scientific progress in Huntington's disease (HD) relies upon the availability of appropriate animal models that enable insights into the disease's genetics and/or pathophysiology. Large animal models, such as domesticated ...

Recommended for you

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.