Researchers find humans process echo location and echo suppression differently

August 28, 2013 by Bob Yirka report
This image shows brain activity associated with echolocation in the blind. Credit: Alan thistle / Wikipedia

(Medical Xpress)—A trio of German researchers has found that human beings listening to sounds that have a corresponding echo, process the sounds differently depending on whether they are using echo location or echo suppression. In their paper published in Proceedings of the Royal Society B, the team describes experiments with volunteers they undertook to understand how humans process echo sounds and results obtained in analyzing their observations.

Echo location is where a person or animal emits a sound and then listens for the echo as the sound is bounced back to them. By noting the time lag and change in volume and tone of the bounced sound, echo locaters are able "see" objects that are around them, and in some cases to distinguish between them. Scientists have known for years that humans, especially those that lose their sight, have some degree of echo location abilities. What's not been clear is how people process echoes when they can see what is going on around them, versus when they cannot. To find out more, the research team enlisted the assistance of several sighted volunteers.

In the first experiment, the volunteers were fitted with headphones and asked to discriminate between sounds that appeared to come from a specific source and then an echo which was made to sound as if had come from a different direction. The team called this a "listening" experiment.

In the second experiment, the researchers fitted the volunteers with both and a microphone. The volunteers were asked to make a clicking noise—which was caused to sound like it was being bounced off of an object providing an echo—and then to discriminate between the original sound and the echo produced. The team called this an "echolocation" experiment.

In analyzing how the volunteers responded to the two experiments, the researchers found that in the listening experiment, the volunteers tended to ignore the echo sound altogether, choosing to focus on the original sound and the direction from which it was coming. In the echolocation experiment, the volunteers noted both the they made themselves and the echo that was produced. This suggests, they say, that humans automatically suppress a directional response to sounds when they are able to see the world around them. When making the sounds themselves, however, their brains focuses on both sounds and in so doing, is able to recognize the difference in tone, volume and direction, allowing for creating a mental map to recognize objects that cannot be seen visually.

Explore further: New study finds blind people have the potential to use their 'inner bat' to locate objects

More information: Echolocation versus echo suppression in humans, Published 28 August 2013 DOI: 10.1098/rspb.2013.1428

Abstract
Several studies have shown that blind humans can gather spatial information through echolocation. However, when localizing sound sources, the precedence effect suppresses spatial information of echoes, and thereby conflicts with effective echolocation. This study investigates the interaction of echolocation and echo suppression in terms of discrimination suppression in virtual acoustic space. In the 'Listening' experiment, sighted subjects discriminated between positions of a single sound source, the leading or the lagging of two sources, respectively. In the 'Echolocation' experiment, the sources were replaced by reflectors. Here, the same subjects evaluated echoes generated in real time from self-produced vocalizations and thereby discriminated between positions of a single reflector, the leading or the lagging of two reflectors, respectively. Two key results were observed. First, sighted subjects can learn to discriminate positions of reflective surfaces echo-acoustically with accuracy comparable to sound source discrimination. Second, in the Listening experiment, the presence of the leading source affected discrimination of lagging sources much more than vice versa. In the Echolocation experiment, however, the presence of both the lead and the lag strongly affected discrimination. These data show that the classically described asymmetry in the perception of leading and lagging sounds is strongly diminished in an echolocation task. Additional control experiments showed that the effect is owing to both the direct sound of the vocalization that precedes the echoes and owing to the fact that the subjects actively vocalize in the echolocation task.

Press release

Related Stories

New study finds blind people have the potential to use their 'inner bat' to locate objects

May 20, 2013
New research from the University of Southampton has shown that blind and visually impaired people have the potential to use echolocation, similar to that used by bats and dolphins, to determine the location of an object.

How bats stay on target despite the clutter (w/ Video)

July 28, 2011
In a paper published this week in Science, researchers at Brown University and from the Republic of Georgia have learned how bats can home in on a target, while nearly instantaneously taking account of and dismissing other ...

Study indicates visual adaptation enhanced by sleep and may be tied to memory

August 28, 2013
(Medical Xpress)—A team of researchers at University College in London has conducted a study that suggests that visual adaptation is enhanced by sleep and might also be tied to memory. In their paper published in Proceedings ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

chienfu
not rated yet Aug 30, 2013
Echolocation is an amazing capability which is dreadfully under-utilized in the blind mobility field. I think that raising awareness of it in this form will help to make it more of a household term and eliminate some of the psychological barriers to entry for the blind. Thank you for publishing this.
I am personally a sighted person and have been practicing echolocation for quite some time. I recently published a book called the Beginner's Guide to Echolocation which will, like this article, dispel some of the mystery shrouding this very powerful tool.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.