Scientists develop method that ensures safe research on deadly flu viruses

August 12, 2013, The Mount Sinai Hospital

A new strategy that dismantles a viral genome in human lung cells will ensure safe research on deadly strains of influenza, say researchers from the Icahn School of Medicine at Mount Sinai.

Details of their "molecular biocontainment" approach, designed to prevent effective transmission of these viruses to humans, are published in Nature Biotechnology.

The strategy they developed and tested will enable healthy molecules in cells to latch on to these viruses and cut the bugs up before they have a chance to infect the .

Findings from the study, led by Benjamin tenOever and Adolfo Garcia-Sastre, both Fishberg Professors in the Department of Medicine and Department of Microbiology at Mount Sinai, should resolve concerns that led in 2012 to a worldwide, yearlong voluntary moratorium on research into the deadly H5N1 .

The ban came after several scientific teams successfully altered the H5N1 viral genome to enable of the bird flu between ferrets—mammals considered a good research model for humans. The public health concern was that altered H5N1 could escape the lab, infect and spread among humans, producing a .

"The question last year was whether the risk of altered bird flu escaping laboratories justified the science aimed at understanding the transmission of these viruses. With our method, the possibility of is no longer a concern," says Dr. tenOever.

H5N1 normally spreads between poultry and . It can be transmitted from birds to humans, with difficulty, and has only rarely been passed between people. It is lethal to humans. Since 2003, it has killed 360 people out of 610 people infected.

The researchers say the approach they developed works for all influenza A viruses, which includes H5N1, and potentially with other highly pathogenic RNA viruses, including Ebola and SARS.

Dr. tenOever is known internationally for his work on using microRNAs (miRNAs)—small noncoding RNA molecules that help regulate gene expression—to help the body fight off viral pathogens. He has created a strategy that mimics the system plants use to destroy invading viruses.

"When a plant recognizes viral material, it creates a small inhibitory RNA (siRNA) that latches on to the virus and cleaves it," says Dr. tenOever. Human cells also have small RNAs in the form of miRNAs, but they are used to maintain cell health—not to fight a virus. Drs. tenOever and Garcia-Sastre—along with scientists from the University of Maryland's Department of Veterinary Medicine—discovered that if they alter a viral genome by adding a binding site for a miRNA found in human cells, that molecule morphs into a plant-like attacker. It latches on to the virus and destroys it in the same way plant siRNAs do.

In this study, the scientists discovered a specific miRNA (miR-192) that is found in human and mouse lung cells, but not in the lungs of ferrets. They added multiple binding sites for miR-192 on to the H5N1 genome, and demonstrated in mice that, upon contact, destroyed the virus. They then demonstrated that H5N1 transmission between ferrets was not decreased when altered virus was used. The researchers also showed the approach works with other influenza A viruses.

"It is clear that we can apply this technology to any virus," Dr. tenOever says. "The only requirements are that we need a miRNA that is present in humans, but not in the model system where we want to study the virus, such as in ferrets. We also need a that permits insertion of miRNA target sites."

And once a virus is altered to contain the miRNA target sites, it can replicate ad infinitum for research in laboratories worldwide, Dr. tenOever says. "There is no need to continually go back to the drawing board," he says.

In January, a handful of scientists in nine nations resumed their research on H5N1, using standard biocontainment procedures. Drs. tenOever and Garcia-Sastre believe that adding this molecular biocontainment strategy to their research should relieve any public concern pertaining to this research.

Explore further: Study puts troubling traits of H7N9 avian flu virus on display

More information: Researchers use microRNA to trap mutant viruses in the lab

MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies, Nature Biotechnology (2013) DOI: 10.1038/nbt.2666

Related Stories

Study puts troubling traits of H7N9 avian flu virus on display

July 10, 2013
The emerging H7N9 avian influenza virus responsible for at least 37 deaths in China has qualities that could potentially spark a global outbreak of flu, according to a new study published today (July 10, 2013) in the journal ...

Mutant version of H5N1 flu virus found to be more preferential to human infection

April 25, 2013
(Medical Xpress)—An international team of bio-researchers has found that a mutant strain of the H5N1 influenza virus (created in a lab) has a 200-fold preference for binding with receptors in human cells, over those found ...

Bird flu mutation study offers vaccine clue

April 8, 2013
(Medical Xpress)—Scientists have described small genetic changes that enable the H5N1 bird flu virus to replicate more easily in the noses of mammals.

Studies showing how bird flu viruses could adapt to humans offer surveillance and vaccine strategies

June 6, 2013
Bird flu viruses are potentially highly lethal and pose a global threat, but relatively little is known about why certain strains spread more easily to humans than others. Two studies published today in the journal Cell identify ...

Recent studies warn surveillance of bird flu strains is needed

May 3, 2013
(Medical Xpress)—Recent scientific papers from China suggest a vigilant watch should be kept on the development of bird flu viruses, as a new strain has been identified and previously known viruses have been shown capable ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.