Decoy FGFR3 protein appears to prevent dwarfism in mice

September 24, 2013 by Bob Yirka, Medical Xpress report
X-ray radiographs illustrating treatment effect on skeletal growth. Credit: Sci. Transl. Med. 5, 203ra124 (2013) DOI: 10.1126/scitranslmed.3006247

(Medical Xpress)—A team made up of researchers from several institutions in France has found that a decoy protein injected into mice, appears to prevent the development of dwarfism. In their paper published in the journal Science, the team describes how they used a recombinant protein therapeutic approach with a soluble form of a human protein to counteract the gene mutation responsible for dwarfism in mice.

Dwarfism is a condition where people have short arms and legs relative to their torso and head. In addition to causing , it has been found to cause spinal and breathing problems. Currently, there is no cure for the condition. In this new effort, the researchers in France are reporting that they've made major headway in preventing it from happening—at least in mice.

Prior research has revealed that most types of dwarfism are caused by a mutation in the FGFR3 gene—it leads to receptors on the surface of chondrocytes () becoming hyperactive, preventing the proper formation of bone. To prevent the chondrocytes from becoming hyperactive, the researchers developed a soluble form of a protein to act as a decoy—they called it sFGFR3—it bonds with growth factors in instead of with those generated by the mutant FGFR3 gene protein.

The result, the team reports is the prevention of dwarfism in test mice (that had a condition similar to achondroplasia—the most common form of dwarfism in humans) that were injected with the protein twice a week for three weeks. They report also that other problems associated with dwarfism disappeared as well and that the treated mice gave birth to normal mice after reaching adulthood, showing that the skeletal structures of the mice were sufficient for delivery.

So optimistic are the researchers about their results, they are predicting that their protein will be ready for clinical trials very soon and that the protein could conceivably be ready for delivery to patients as soon as three to five years from now—effectively eradicating in the future. They point out that the therapy will only work when given to children (pre-puberty) most likely, shortly after birth.

Explore further: Research team identifies gene mutation that causes loss of pain perception

More information: S. Garcia, B. Dirat, T. Tognacci, N. Rochet, X. Mouska, S. Bonnafous, S. Patouraux, A. Tran, P. Gual, Y. L. Marchand-Brustel, I. Gennero, E. Gouze, Postnatal Soluble FGFR3 Therapy Rescues Achondroplasia Symptoms and Restores Bone Growth in Mice. Sci. Transl. Med. 5, 203ra124 (2013) DOI: 10.1126/scitranslmed.3006247

Achondroplasia is a rare genetic disease characterized by abnormal bone development, resulting in short stature. It is caused by a single point mutation in the gene coding for fibroblast growth factor receptor 3 (FGFR3), which leads to prolonged activation upon ligand binding. To prevent excessive intracellular signaling and rescue the symptoms of achondroplasia, we have developed a recombinant protein therapeutic approach using a soluble form of human FGFR3 (sFGFR3), which acts as a decoy receptor and prevents FGF from binding to mutant FGFR3. sFGFR3 was injected subcutaneously to newborn Fgfr3ach/+ mice—the mouse model of achondroplasia—twice per week throughout the growth period during 3 weeks. Effective maturation of growth plate chondrocytes was restored in bones of treated mice, with a dose-dependent enhancement of skeletal growth in Fgfr3ach/+ mice. This resulted in normal stature and a significant decrease in mortality and associated complications, without any evidence of toxicity. These results describe a new approach for restoring bone growth and suggest that sFGFR3 could be a potential therapy for children with achondroplasia and related disorders.

Related Stories

Research team identifies gene mutation that causes loss of pain perception

September 16, 2013
(Medical Xpress)—A large team of European researchers has identified a gene mutation that is responsible for causing a condition that leads to an inability to experience pain in humans. In their paper published in Nature ...

Researchers erase human brain tumor cells in mice

September 23, 2013
Working with mice, Johns Hopkins researchers have discovered that weeks of treatment with a repurposed FDA-approved drug halted the growth of—and ultimately left no detectable trace of—brain tumor cells taken from adult ...

Key regulator of blood vessel formation could be a potential new target for cancer drugs

August 30, 2013
During formation of the vascular system, successively smaller blood vessels sprout from existing ones to form networks of capillaries in patterns uniquely adapted to the function of the organ they enter. This process, called ...

Autism gene stunts neurons, but growth can be restored, in mice

September 12, 2013
Brown University researchers have traced a genetic deficiency implicated in autism in humans to specific molecular and cellular consequences that cause clear deficits in mice in how well neurons can grow the intricate branches ...

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.