New research on inherited herpesvirus may have implications for transplantation

September 20, 2013

Up to half a million people in Britain today may not know it, but in their genetic material they carry a particular form of herpesvirus 6 inherited from a parent.

The study from the world-renowned Department of Genetics at the University of Leicester, is funded principally by the Medical Research Council (MRC), and published in the journal Nucleic Acids Research.

The research led by Dr Nicola Royle, Senior Lecturer in Genetics, has identified a mechanism by which the inherited herpesvirus 6 can escape from the chromosome and may be able to reactivate under certain conditions.

This research may have important implications for transplantation, as those seeking transplants are often immunosuppressed, and are more susceptible to viral reactivation. The implications of the study suggested screening donors for this inherited form of HHV-6 could help doctors make more informed decisions about which donors to use.

The research in Dr Royle's laboratory focuses on telomeres, structures at the ends of that have a protective role. When a telomere becomes short or is damaged it can trigger or result in ; consequently telomeres have roles in ageing and cancer. The inherited herpesvirus 6 (CI-HHV-6) is found in a telomere and so the questions Dr Royle has been addressing are: what is the virus doing there and does it affect telomere function?

There are many human herpesviruses and most can enter latency following infection, during which they persist in a small subset of cells lifelong. For example, the primary infection of HHV-3 causes in children but following latency it can reactivate and cause .

The 1% of us that inherit CI-HHV-6 in a telomere have a high copy number of this virus (one copy per cell of the whole body) but it is not known if this is a form of latency.

The Leicester study found that in people with CI-HHV-6, the is intact (has all of the genes required to reactivate). They showed that the telomere with the virus is unstable - prone to sudden deletions resulting in a very short telomere that may cause further instability. This facilitates release of the viral genome. Dr Royle proposes that the virus uses normal telomere processes to escape from the chromosome and that this may represents the first step towards viral reactivation.

Dr Royle said the research may have important implications in a transplant setting because those seeking transplants are immunosuppressed, in order to stop their bodies rejecting the donor's organ. If the donor is one of the half a million people with CI-HHV-6 there may be a risk to the organ recipient or an impact on the transplanted organ, either through viral reactivation or through the effect on the telomere. Until further research is conducted to determine whether or not there is an increased risk, it may be prudent to screen organ donors for the inherited form of HHV-6.

Future research in Dr Royle's laboratory will seek to determine how often the HHV-6 escapes from the telomere and what controls this. Researchers also seek to understand how shortening due to age could influence the rate of HHV-6 release from the chromosome. It is predicted that this could increase the risk reactivation.

Explore further: Inherited virus can cause cognitive dysfunction and fatigue

Related Stories

Inherited virus can cause cognitive dysfunction and fatigue

July 26, 2013
Many experts believe that chronic fatigue syndrome (CFS) has several root causes including some viruses. Now, lead scientists Shara Pantry, Maria Medveczky and Peter Medveczky of the University of South Florida's Morsani ...

Programmed cell death activates latent herpesviruses

September 5, 2013
Researchers have found that apoptosis, a natural process of programmed cell death, can reactivate latent herpesviruses in the dying cell. The results of their research, which could have broad clinical significance since many ...

Study finds that apoptosis triggers replication of common viruses

August 27, 2013
Researchers from Children's National Medical Center have found that an alternate, "escape" replication process triggered by apoptosis—the process of cell death or "cell suicide"—appears to be common in human herpesviruses ...

Telomere shortening affects muscular dystrophy gene

May 6, 2013
(Medical Xpress)—Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder that causes the muscles of the upper body to waste away. It is unusual in that symptoms do not usually appear until sufferers are in their ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.