Scientists discover a novel opiate addiction switch in the brain

September 10, 2013, University of Western Ontario

Neuroscientists at Western University (London, Canada) have made a remarkable new discovery revealing the underlying molecular process by which opiate addiction develops in the brain. Opiate addiction is largely controlled by the formation of powerful reward memories that link the pleasurable effects of opiate-class drugs to environmental triggers that induce drug craving in individuals addicted to opiates. The research is published in the September 11th issue of The Journal of Neuroscience.

The Addiction Research Group led by Steven Laviolette of the Schulich School of Medicine & Dentistry was able to identify how exposure to heroin induces a specific switch in a memory molecule in a region of the brain called the basolateral amygdala, which is involved importantly in controlling memories related to opiate addiction, withdrawal, and relapse. Using a rodent model of opiate addiction, Laviolette's team found that the process of opiate addiction and withdrawal triggered a switch between two molecular pathways in the amygdala controlling how opiate addiction memories were formed. In the non-dependent state, they found that a molecule called extracellular signal-related kinase or "ERK" was recruited for early stage addiction memories. However, once opiate addiction had developed, the scientists observed a functional switch to a separate molecular memory pathway, controlled by a molecule called calmodulin-dependent kinase II or "CaMKII".

"These findings will shed important new light on how the brain is altered by opiate drugs and provide exciting new targets for the development of novel pharmacotherapeutic treatments for individuals suffering from chronic opiate addiction," says Laviolette, an associate professor in the Departments of Anatomy & Cell Biology, Psychiatry, and Psychology.

Explore further: Research identifies a way to block memories associated with PTSD or drug addiction

More information: The paper is titled "Opiate Exposure and Withdrawal Induces a Molecular Memory Switch in the Basolateral Amygdala Between ERK1/2 and CaMKII-Dependent Signaling Substrates."

Related Stories

Research identifies a way to block memories associated with PTSD or drug addiction

December 5, 2012
New research from Western University could lead to better treatments for Post-Traumatic Stress Disorder (PTSD) and drug addiction by effectively blocking memories. The research performed by Nicole Lauzon, a PhD candidate ...

Radical solution to ‘clip’ addiction

August 8, 2011
Accidentally leaving a stainless-steel spatula in an overnight experiment has led to the discovery of a more efficient and environmentally friendly method of producing anti-addiction medications.

New insight into how brain 'learns' cocaine addiction

August 1, 2013
A team of researchers says it has solved the longstanding puzzle of why a key protein linked to learning is also needed to become addicted to cocaine. Results of the study, published in the Aug. 1 issue of the journal Cell, ...

Heroin availability increasing across Washington state

June 12, 2013
New data from the University of Washington's Alcohol and Drug Abuse Institute indicates increases in heroin availability, abuse and deaths across the state, particularly among young adults ages 18-29. These increases are ...

Early warning of newborn withdrawal

July 2, 2013
In substance-exposed newborns, identification of the gene variations associated with risk of opioid addiction could aid the treatment of their withdrawal symptoms in the critical hours after birth, according to a University ...

Methamphetamine withdrawal may lead to brain-related concerns for recovering addicts

February 14, 2013
University of Florida researchers have found changes in the behavior and in the brains of mice in withdrawal from methamphetamine addiction. These findings may affect the way physicians treat recovering methamphetamine addicts, ...

Recommended for you

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.