A storm in our veins

September 18, 2013 by Angela Herring, Northeastern University

Suppose you're hiking through the forest on a sunny afternoon as a light breeze passes through the trees, gently grazing your skin. Suddenly the sky opens up and a rainstorm ensues. The trees keep you dry, but the weather worsens and 50 mile-per-hour winds start knocking down trees, leaving you unprotected.

This is similar to what it's like inside our , explained Eno Ebong, a new assistant professor in the Department of Chemical Engineering. Her research focuses on studying the effects of the of blood flow on the that line and protect our blood vessels—work that is aimed at advancing vascular disease treatment.

Under normal circumstances, the environment inside our blood vessels resembles a quiet, breezy day. But sometimes, it gets a little stormy. For instance, at branches, constrictions, or curvatures the geometry of a vessel becomes askew. Another way to think of it is like the plumbing of a house, when problems occur at the pipes' curves. The same is true in the human body's plumbing, Ebong said. Geometry changes cause flow disruptions, effect the endothelial cells lining and protecting the vessel, and can eventually lead to plaque build up.

Thankfully, the vessels' endothelial cell lining has its own protective miniature forest, called the glycocalyx. Consisting mostly of and proteins, this structure stands on end like a forest of tiny trees. It's also the primary focus of Ebong's work.

"I study the structure of the glycocalyx under different flow conditions," said Ebong, who served as a post-doctoral researcher and professor at the Albert Einstein College of Medicine before coming to Northeastern. "I try to make the connection between glycocalyx structure and its function—or dysfunction—as a protective coat on top of the endothelial cells."

In previous and ongoing studies, Ebong's group has confirmed and defined the means by which the glycocalyx plays a role in endothelial cell protection. When new enzymes or manipulated genes were introduced and broke down different components in the glycocalyx, her team observed significant disruptions to the way the endothelial cells lining the blood vessels were impacted by flow. "The glycocalyx appears to be so much more complicated than we expected," she said.

By understanding the roles that the different glycocalyx components play in the material's protective function, Ebong said, she hopes to identify new targets and develop new tools to prevent, diagnose, or treat vascular disease.

Explore further: Damage to blood vessel lining may account for kidney failure patients' heart risks

Related Stories

Damage to blood vessel lining may account for kidney failure patients' heart risks

October 18, 2012
Individuals with kidney failure often develop heart problems, but it's not clear why. A study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN) provides evidence that their kidneys' ...

New target for the fight against cancer as a result of excessive blood vessel formation

August 1, 2013
New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments ...

Team creates cells that line blood vessels

August 22, 2013
In a scientific first, Harvard Stem Cell Institute scientists have successfully grown the cells that line the blood vessels—called vascular endothelial cells—from human induced pluripotent stem cells (iPSCs), revealing ...

Scientists identify mechanisms in kidney disease that trigger heart attacks and strokes

August 21, 2012
(Medical Xpress) -- Up to 15 per cent of the population in the UK are affected by kidney disease. While a small number of individuals will develop kidney failure, a far greater number will develop circulatory diseases such ...

Researchers looking inside vessels to understand blood's ebb and flow

September 4, 2013
Researchers have known for some time that the blood vessels that transport blood to and from tissues and organs in the body are more than just bodily pipelines. Arterioles and capillaries, the small vessels, actually play ...

Researchers discover new blood vessel-generating cell with therapeutic potential

October 16, 2012
Researchers at the University of Helsinki believe they have discovered stem cells that play a decisive role in the growth of new blood vessels. If researchers learn to isolate and efficiently produce these stem cells found ...

Recommended for you

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.