Uncovering cancer's inner workings by capturing live images of growing tumors

September 17, 2013
The new imaging tool reveals strikingly different networks of blood vessels surrounding different types of tumors in a mouse model. Left: breast cancer in the breast. Middle: metastatic breast cancer in the brain. Right: ectopic breast cancer in the skin. Credit: Nature Medicine

Scientists seeking new ways to fight cancer often try to understand the subtle, often invisible, changes to DNA, proteins, cells, and tissue that alter the body's normal biology and cause disease. Now, to aid in that fight, a team of researchers has developed a sophisticated new optical imaging tool that enables scientists to look deep within tumors and uncover their inner workings. In experiments that will be described at Frontiers in Optics (FiO), The Optical Society's (OSA) Annual Meeting, Dai Fukumura and his colleagues will present new optical imaging techniques to track the movement of molecules, cells, and fluids within tumors; examine abnormalities in the blood vessel network inside them; and observe how the tumors were affected by treatments.

These techniques, created by Fukumura and his long-term collaborators at Massachusetts General Hospital and Harvard Medical School, combine two different high-tech methods that were custom-built for the research. One is called multiphoton laser-scanning (MPLSM), which is an advanced fluorescence that is now commercially available at the high end of the microscope market. The other is called optical frequency domain imaging (OFDI), which images tissues by their light scattering properties. According to Fukumura, OFDI is gaining popularity in the optical imaging field but has yet to become commercially available.

"MPLSM overcomes many of the limitations from which conventional microscopy and confocal microscopy suffer, and OFDI provides robust large volume imaging data," Fukumura said.

Fukumura will present their research at FiO 2013, taking place Oct. 6-10 in Orlando, Fla. There, he will describe how his unique technique can image tumors inside and out, and show detailed pictures of live tumors—images that he and colleagues call "astonishing."

This image shows a tumor before (left) and five days after (right) anti-angiogenic treatment -- a novel treatment approach by inhibiting blood vessel growth. Credit: Nature Medicine

He added that while the new combined approach would be too expensive to be used for routine diagnostic purposes, it promises to help researchers better understand the intricate workings of human cancer and aid in drug discovery to treat cancer. "These optical imaging approaches can provide unprecedented insights in the biology and mechanisms of cancer," he said.

Presentation FW5A.2, "Experimental Methods for In Vivo Tissue Imaging," takes place Wednesday, Oct. 9 at 4:15 p.m. EDT at the Bonnet Creek Ballroom, Salon IV at the Hilton Bonnet Creek in Orlando, Fla.

Explore further: New techniques use lasers, LEDs, and optics to 'see' under the skin

Related Stories

New techniques use lasers, LEDs, and optics to 'see' under the skin

July 25, 2013
Impressive examples of new non-invasive optical techniques using lasers, light-emitting diodes (LEDs), and spectroscopic methods to probe and render images from beneath the surface of the skin are featured in a newly completed ...

New laser-based tool could dramatically improve the accuracy of brain tumor surgery

September 4, 2013
In the battle against brain cancer, doctors now have a new weapon—a new imaging technology that will make brain surgery dramatically more accurate by allowing surgeons to distinguish—at a microscopic level—between brain ...

A more accurate and noninvasive look at cancerous tumors

July 10, 2012
(Medical Xpress) -- Chao Zhou believes his work with combining imaging technologies has the potential to improve surgeries that remove malignant breast tumors.

New hybrid imaging device shows promise in spotting hard-to-detect ovarian cancer

September 13, 2011
By combining three previously unrelated imaging tools into one new device, a team of researchers from the University of Connecticut and the University of Southern California has proposed a new way to diagnose early-stage ...

Recommended for you

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.