Blood cell breakthrough could help save lives

October 8, 2013, University of Reading

Cutting-edge research from the University of Reading has provided a crucial breakthrough in understanding how blood clots form. The results of the study, funded by the British Heart Foundation (BHF), could potentially lead to the development of new drugs to treat one of the world's biggest killer illnesses.

Cardiovascular diseases, which include attacks, strokes and heart failure, are the cause of approximately 200,000 deaths each year in the UK alone. Many are brought about by clots blocking major vessels, preventing critical blood flow to the heart or brain.

The research, published today in the journal Nature Communications, builds on last year's groundbreaking discovery by scientists in the University's Institute for Cardiovascular and Metabolic Research (ICMR). Professor Jonathan Gibbins and his team found, for the first time, the mechanism by which platelets, the blood cells that cause clots, 'communicate' with each other.

The clotting process helps the body to repair itself and stops wounds from bleeding. But inappropriate activation of platelets leads to the formation of clots in the bloodstream (thrombosis), which can lead to a potentially fatal or stroke.

Currently, doctors treating can administer drugs that reduce the tendency of the blood to clot, and therefore decrease the risk of thrombosis. However, such anti-thrombotic drugs are not effective for some patients, and can cause dangerous side-effects which include bleeding.

Professor Jonathan Gibbins and Dr Sakthivel Vaiyapuri have headed up an international team of researchers that have discovered how platelets use specialised pore-like structures, called gap junctions, allowing direct communication between the cells. These structures have been studied previously in other cells that are in constant contact with each other, but the researchers said their role in was a 'big surprise'.

The scientists conclude that the discovery could lead to the creation of innovative new drugs to prevent or treat thrombosis.

Professor Gibbins said: "Understanding the communication mechanism for blood clotting and thrombosis could lead to life-saving . Finding the molecules that control these channels may pave the way for the development of more effective anti-thrombotic therapies to prevent heart attacks and strokes."

Professor Jeremy Pearson, Associate Medical Director at the BHF, which funded the study, said:

"Anti-clotting medicines are widely used in patients at risk of coronary heart disease to prevent heart attacks and strokes. Professor Gibbins' unexpected discovery, of a new communication method between the clot-forming platelet cells, opens up the possibility of designing new medicines to reduce the risk of clotting or . Before we can achieve this, more research is needed to understand what signals occur during this communication and how it controls the platelet's ability to clot."

"Connexin40 Regulates Platelet Function" is published in the journal Nature Communications.

Explore further: Blood cell breakthrough could help treat heart disease

Related Stories

Blood cell breakthrough could help treat heart disease

April 27, 2012
(Phys.org) -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's biggest killer ...

Researchers find promising new angle for drugs to prevent stroke and heart attack

August 30, 2013
Platelets, which allow blood to clot, are at the heart of numerous cardiovascular problems, including heart attacks and stroke. New research has uncovered a key platelet protein that could offer a new angle for developing ...

Researchers find key to blood-clotting process

June 26, 2013
Researchers, including Professor Alastair Poole and Dr Matthew Harper from the University of Bristol's School of Physiology and Pharmacology, have uncovered a key process in understanding how blood clots form that could help ...

Discovery of novel regulators of the birth of blood platelets

October 7, 2013
EU research has led to a better understanding of the molecular mechanisms that make certain blood-producing cells function normally. The research will help prevent diseases that lead to heart attacks and strokes.

Research reveals new aspect of platelet behavior in heart attacks: Clots can sense blood flow

October 29, 2012
The disease atherosclerosis involves the build up of fatty tissue within arterial walls, creating unstable structures known as plaques. These plaques grow until they burst, rupturing the wall and causing the formation of ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.