RNA build-up linked to dementia and motor neuron disease

October 30, 2013

A new toxic entity associated with genetically inherited forms of dementia and motor neuron disease has been identified by scientists at the UCL Institute of Neurology. The toxin is the result of a genetic mutation that leads to the production of RNA molecules which could be responsible for the diseases. The findings are published in the journal Acta Neuropathologica.

Frontotemporal dementia and motor neuron disease are related neurodegenerative diseases that affect approximately 15,000 people in the UK. Frontotemporal dementia causes profound personality and behaviour changes. Motor neuron disease leads to muscle weakness and eventual paralysis.

The most common known cause for both and motor neuron disease is an unusual genetic mutation in the C9orf72 gene. The mutation involves a small string of DNA letters at the beginning of the gene, which expand massively to produce thousands of copies.

The new , funded by Alzheimer's Research UK and the Medical Research Council, has shown that this DNA expansion acts in a peculiar way, leading to the generation of unexpected RNA molecules that could cause the disease.

When a gene is turned on, an RNA copy of the gene's DNA is generated. The gene's DNA code has directionality, so that it is normally turned on in only one direction, termed the 'sense direction'. The new research shows that the DNA expansion is turned on in both directions.

This leads to the normal sense RNA being produced, as well as RNA in the opposite direction, termed 'antisense RNA'. Both RNA types accumulate into aggregates in the neurons of people with frontotemporal dementia.

Intriguingly, the research showed that people with more of these aggregates in their brains developed the disease earlier than people with less RNA aggregates. This correlation suggests that the build-up may be important in causing frontotemporal dementia and motor neuron disease, making the C9orf72 DNA expansion a potential target for therapy.

Dr Adrian Isaacs, lead researcher at the UCL Institute of Neurology, said: ""These findings identify new, potentially toxic molecules in diseases caused by DNA expansions. The next steps will be to determine how they might kill neurons and how to stop them building up."

Dr Simon Ridley, Head of Research at Alzheimer's Research UK, the UK's leading dementia research charity, said: "The discovery of the C9ORF72 gene was a major step forward for research into frontotemporal dementia and , and it's positive to see researchers beginning to untangle how this gene may cause these diseases in some people.

"Alzheimer's Research UK is delighted to have supported this promising study. By unravelling some of the biological mechanisms at play, this research could take us further on the road to new treatments that are so desperately needed by the thousands of people with these devastating diseases. For these results to reach their full potential it's vital that we continue to invest in research."

Explore further: Researchers identify quadruplex structure in C9ORF72

More information: C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci, Acta Neuropathologica. DOI: 10.1007/s00401-013-1200-z

Related Stories

Researchers identify quadruplex structure in C9ORF72

December 24, 2012
(Medical Xpress)—A Motor Neurone Disease (MND) Association funded research project at UCL has given new insights into the structure and function of an MND gene called C9ORF72. The work is published in the journal Scientific ...

Lou Gehrig's disease: From patient stem cells to potential treatment strategy in one study

October 25, 2013
Although the technology has existed for just a few years, scientists increasingly use "disease in a dish" models to study genetic, molecular and cellular defects. But a team of doctors and scientists led by researchers at ...

'Individualized' therapy for the brain targets specific gene mutations causing dementia and ALS

October 16, 2013
Johns Hopkins scientists have developed new drugs that—at least in a laboratory dish—appear to halt the brain-destroying impact of a genetic mutation at work in some forms of two incurable diseases, amyotrophic lateral ...

Motor neurone disease association opens Manchester-based global DNA bank

October 4, 2013
A specialist DNA Bank, based at The University of Manchester, is now open to the worldwide research community, supporting more crucial discoveries about motor neurone disease (MND), a devastating terminal illness.

Identification of abnormal protein may help diagnose, treat ALS and frontotemporal dementia

February 12, 2013
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective treatment. Researchers are beginning to recognize ALS and FTD as ...

'RNA sponge' mechanism may cause ALS/FTD neurodegeneration

April 1, 2013
The most common genetic cause of both ALS (amyotrophic lateral sclerosis) and FTD (frontotemporal dementia) was recently identified as an alteration in the gene C9orf72. But how the mutation causes neurodegenerative disease ...

Recommended for you

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.