Scientists unravel mechanisms in chronic itching

October 15, 2013, Washington University School of Medicine
Scientists unravel mechanisms in chronic itching
In genetically engineered mice that are prone to chronic itching, researchers identified elevated signaling (shown in red) in nerve cells involved in both itch and in pain. Credit: Washington University Center for the Study of Itch

Anyone who has suffered through sleepless nights due to uncontrollable itching knows that not all itching is the same. New research at Washington University School of Medicine in St. Louis explains why.

Working in , the scientists have shown that chronic itching, which can occur in many medical conditions, from eczema and psoriasis to kidney failure and liver disease, is different from the fleeting urge to scratch a mosquito bite.

That's because chronic itching appears to incorporate more than just the nerve cells, or neurons, that normally transmit itch signals. The researchers found that in chronic itching, neurons that send itch signals also co-opt pain neurons to intensify the itch sensation.

The new discovery may lead to more effective treatments for chronic itching that target activity in neurons involved in both pain and itch. The research is reported online Oct. 15 in The Journal of Clinical Investigation and will appear in the November print issue.

"In normal itching, there's a fixed pathway that transmits the itch signal," said senior investigator Zhou-Feng Chen, PhD, who directs Washington University's Center for the Study of Itch. "But with chronic itching, many neurons can be turned into itch neurons, including those that typically transmit pain signals. That helps explain why chronic itching can be so excruciating."

Credit: Washington University BioMed Radio

Chen, a professor of anesthesiology, and his colleagues generated mice in which a protein called BRAF always is active and continually sends signals inside itch neurons. The BRAF gene and the protein it makes are involved in the body's pain response, but scientists didn't know whether the gene also played a role in itch.

"We thought the animals might be prone to feeling pain rather than itching," Chen explained. "To our great surprise, the mice scratched spontaneously. At first, we didn't know why they were scratching, but it turns out we developed a mouse model of chronic itch."

Further studies discovered that the BRAF protein could turn on many itch genes, and they showed similar changes of gene expression in mice with chronic itch induced by dry skin and in mice with allergic contact dermatitis, two of the skin conditions that frequently cause people to scratch incessantly.

The findings suggest that targeting proteins in the BRAF pathway may open new avenues for treating chronic itch, a condition in which few therapies are effective. One possibility includes using drugs that are prescribed to treat pain.

"Certain drugs are used to inhibit some of the same targets in patients with chronic pain, and those medications also may quiet down itch," Chen said.

In earlier studies, Chen identified gastrin-releasing peptide (GRP), a substance that carries itch signals to a gene called GRPR (gastrin-releasing peptide receptor) in the spinal cord. In the new study, GRP and GRPR activity was doubled in the genetically altered mice, which could account for some of the increase in the intensity of itching. But other genes that normally are activated by pain also were turned on in the itch pathway, further intensifying the itch sensation.

Surprisingly, however, the mice had a normal response to pain, indicating that the and itch pathways are very different.

Unlike scratching a mosquito bite, which usually is only a temporary sensation, chronic itch can persist much longer, according to Chen, also a professor of psychiatry and of developmental biology. His team found that the mice in this study not only scratched spontaneously but also had more severe responses when exposed to substances that normally would induce acute itching.

"In people, chronic itching can last for weeks, months or even years," Chen said. "These mice are helping us to understand the pathways that can be involved in transmitting itch signals and the many contributors to chronic itching. There are many pathways leading from BRAF, and all of these could be potential targets for anti- therapies."

Explore further: These scientists are 'itching' to help you stop scratching

More information: Zhau ZQ, Huo FQ, Jeffry J, Hampton L, Demehri S, Kim S, Liu XY, Barry DM, Wan L, Liu ZC, Li H, Turkoz A, Ma K, Cornelius LA, Kopan R, Battey JF, Zhong J, Chen ZF. Chronic itch development in sensory neurons requires BRAF signaling pathways. The Journal of Clinical Investigation vol. 123 (11), November 2013, published online Oct.15, 2013.

Related Stories

These scientists are 'itching' to help you stop scratching

June 5, 2013
Itch and scratch, itch and scratch. It's not the most serious physical problem in our lives, but it is common and it is very annoying. Now, researchers at the Hebrew University of Jerusalem and in Boston have come up with ...

Scratching the surface: why skin allergies make us itch

June 6, 2013
A Yale-led team of researchers has identified the protein that controls inflammation and the urge to itch in people who suffer from contact dermatitis due to exposure to poison ivy and other allergens. The study appears in ...

Blocking nerve cells could prevent symptoms of eczema

October 3, 2013
A new picture of how the nervous system interacts with the immune system to cause the itch and inflammation associated with eczema, a chronic skin disease, could lead to new therapies for the condition, according to University ...

Recommended for you

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

joemostowey
5 / 5 (1) Oct 15, 2013
I've had chronic itching all over my body, especially legs, and sides, for 6 years. The only thing that gives me temporary relief is to spray HOT water quickly over the skin several times. The water is so hot it actually stings, but I get relief for about 8-10 hours.

Doctor says it is eczema, but it covers vast areas of my body. Antihistamines and cortisone works for about an hour.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.