Racing sperm to boost results of in vitro fertilization

October 30, 2013, Worcester Polytechnic Institute
Erkan Tüzel, left, assistant professor of physics at Worcester Polytechnic Institute (WPI), and James Kingsley, a Ph.D. candidate in physics at WPI, examine a component of a high-performance computing cluster that Tüzel uses to run models that simulate the behavior of complex biological systems. Credit: Worcester Polytechnic Institute

The World Health Organization estimates more than 70 million couples worldwide are unable to conceive each year, with close to a third of those cases attributable solely to issues with male fertility—including low sperm count and low sperm motility (a limited ability to swim). Now, with recently published data showing encouraging results, researchers at Worcester Polytechnic Institute (WPI) have received a grant from the National Science Foundation (NSF) to refine a new device that races sperm through a microscopic obstacle course to select those most likely to successfully fertilize an egg.

In vitro fertilization (IVF) is the most widely used assisted reproductive technology and can help overcome problems with male fertility. Its potential for success is significantly enhanced when can be sorted so only the healthiest calls and the best swimmers are used. Unfortunately, current clinical techniques for sorting sperm are inefficient or are likely to damage sperm DNA.

To solve this sorting problem, a new approach has been developed that uses advanced mathematical models and high-powered computer simulations to analyze and predict how sperm swim under varying conditions. The approach is the product of a novel research collaboration between Erkan Tüzel, PhD, assistant professor of physics at WPI, and Utkan Demirci, PhD, assistant professor of medicine and health sciences and technology at Divisions of Biomedical Engineering and Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School.

Demirci's lab is developing microfluidics (small devices sometimes referred to as "lab on a chip") to test new ways to sort sperm. Tüzel and his team use the physics of fluid dynamics and customized algorithms to model how move through narrow channels. Funded by a new three-year, $293,000 grant from the NSF, Tüzel will use simulations to optimize the design of the sperm-sorting chip. As the simulations and computer modeling progress, Demirci's lab will build and test new microfluidic chips based on Tüzel's refinements.

This video shows the results of a computer model developed by Erkan Tüzel, Ph.D., assistant professor of physics at Worcester Polytechnic Institute (WPI), and his graduate student James Kingsley. In the model, sperm moving through a microfluidic chip, developed by BAMM Laboratories at Brigham and Women's Hospital in Boston, are simulated. The chip is designed to help select the most motile and healthy sperm for in vitro fertilization. Credit: Erkan Tüzel, Worcester Polytechnic Institute
"We are grateful to the National Science Foundation for this grant," Tüzel said. "With our collaborators, we hope to be able to build on our research to develop clever microfluidic designs that will be even more effective in sorting sperm and improving the success of assisted reproductive technologies."

Demerici added, "the NSF has supported a true interdisciplinary effort at the convergence of medicine and fluid dynamics addressing a significant reproductive medicine challenge by a new type of thinking for sorting cells."

There are now two standard techniques used to separate out the most motile sperm. One is called the swim-up technique, in which sperm swim from a droplet of liquid into a denser layer of media; the cells reaching the denser layer most quickly are recovered and used for IVF. In the other technique, known as density gradient separation, a sperm sample is placed in a tube filled with layers of liquid of different densities. When the tube is spun in a centrifuge, the strongest swimming sperm are able to cross into the denser liquids.

Neither of these methods is particularly effective at dealing with low sperm counts or low ; in addition, the density gradient technique is known to cause damage to sperm DNA. Also, both techniques use chemical agents that may damage cells. So Tüzel and Demirci have taken a different approach.

The microfluidic device they are collaborating on uses no chemicals or centrifugation. It relies only on the cells' own ability to move through channels. Within the female reproductive tract, sperm swim through a variable fluidic environment with watery micro-channels that help guide them to the egg. In the new device, sperm are placed at one end of a narrow channel and allowed to swim toward the other end. After a set period of time (called the incubation period), the sperm that have made it to the finish line are removed from the channel's end. The idea is to mimic what happens naturally.

In May, Tüzel and Demirci reported results of initial studies in the paper "Exhaustion of Racing Sperm in Nature Mimicking Microfluidic Channels During Sorting" published in the journal Small. This work combined mathematical modeling and the actual results of human and mouse sperm cells tested in a prototype of the microfluidic chip. The team found that the microfluidic channels yielded sperm with significantly higher motility and produced samples with a greater concentration of highly motile sperm than either the swim-up or density gradient techniques. This study showed the potential for developing a new technique for sorting sperm that could effectively, reliably, and safely separate out the most active swimmers. The coarse-grained model Tüzel's group built accurately recapitulated experimental results, and made predictions on the exhaustion time.

"To obtain quantitative agreement with experiments, our simulations predicted an exhaustion time of about 30 minutes for mouse sperm, whereas for human sperm the exhaustion time is more than an hour," Tüzel said. "To the best of our knowledge, this is the first attempt to quantitatively estimate exhaustion time of sperm using modeling coupled to microfluidics experiments."

Next, Tüzel's group will refine the model of sperm locomotion to produce a more realistic simulation, and model differing designs of the microfluidic channels to improve the yield of healthy and motile sperm. "We know, for example, that through hydrodynamic interactions, sperm synchronize their movements to swim more efficiently," Tüzel said. "And we are starting to understand more about how the presence of walls can impact the speed at which multiple sperm move. But we are in need of novel, efficient approaches to model complex interactions between groups of swimming sperm, and how they interact with their surroundings. That is our focus through the new grant."

Explore further: Researchers develop sperm-sorting design that may aid couples undergoing in vitro fertilization

Related Stories

Researchers develop sperm-sorting design that may aid couples undergoing in vitro fertilization

May 23, 2013
(Medical Xpress)—According to the World Health Organization, approximately 70 million couples experience infertility worldwide. Current data suggests that nearly one third of infertility disorders are due to poor sperm ...

Female spiders prefer the sperm of gift-bearing males

October 24, 2013
Research published today in Proceedings of the Royal Society B has provided evidence that females prefer males who bring them gifts- at least in the case of the nursery web spider.

Mitochondrial respiratory capacity, sperm motility linked

April 10, 2012
(HealthDay) -- Sperm with higher motility have increased mitochondrial respiratory capacity, according to a study published in the April issue of Urology.

Sticky sperm could hold fertility key

October 29, 2013
Researchers from the University of Leeds think that sticky sperm could hold the key to greater success for couples undergoing IVF treatment.

Recommended for you

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.