Researchers find brain activity related to individual differences in reading comprehension

November 6, 2013, Northwestern University

What makes a good reader? First, you have to know how to read the words on a page and understand them—but there's a higher-level step to reading comprehension. You have to tie together the words over time, maintaining their order and meaning in your memory, so that you can understand phrases, sentences, paragraphs and extended texts.

Northwestern University researchers were interested in exploring the underlying this higher-level integration step. Through the use of an EEG to measure brainwaves, they were able to predict with almost 90 percent accuracy based on the brain activity differences between ordered and scrambled story texts.

Participants read two versions of a long text presented one word at a time on a computer monitor. One version was in the original order of the story, the other version was in a scrambled order. In each case, participants read the words in order to perform a word-finding task. However, only in the ordered version of the story were they also asked to comprehend the story in preparation for a comprehension test.

The researchers figured that for people who read each word in the ordered version of the story and tried to tie the words together to form a story but didn't comprehend the story well, their brain activity would not differ much between the two versions of the story. Good comprehenders, on the other hand, should show distinctly different brain activity when they were successfully tying together and remembering the story in the ordered version versus when the words were scrambled.

"We used a computational algorithm called a random-forest ensemble to identify neural activity that differentiated good from poor reading comprehenders. This activity was focused at EEG electrodes toward the front of the head," said Julia Mossbridge, lead author of the study and research associate in psychology at Northwestern.

Previous research in this area has examined the brain activity surrounding comprehension of sentences and short passages. Consequently, the most significant finding of the study, Mossbridge said, is that she and her colleagues have developed a method, using longer texts, to get to the integration process in reading comprehension.

"Individuals with reading comprehension deficits in the absence of other reading deficits are almost surely lacking in this higher-level integration skill of tying the words together and maintaining the integrated meaning over time," Mossbridge said. "We hope that our novel paradigm and the result showing the for differentiating good from poor comprehenders could potentially be used to help diagnose and eventually treat reading disorders."

In addition to Mossbridge, co-authors include Marcia Grabowecky, Ken A. Paller and Satoru Suzuki of Northwestern. The article "Neural activity tied to reading predicts individual differences in extended-text " will appear in Frontiers in Human Neuroscience.

Explore further: E-readers more effective than paper for dyslexic readers

Related Stories

E-readers more effective than paper for dyslexic readers

September 18, 2013
As e-readers grow in popularity as convenient alternatives to traditional books, researchers at the Smithsonian have found that convenience may not be their only benefit. The team discovered that when e-readers are set up ...

Getting your message across

July 16, 2012
Far from processing every word we read or hear, our brains often do not even notice key words that can change the whole meaning of a sentence, according to new research from the Economic and Social Research Council (ESRC).

Recommended for you

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Stiffness of connection influences exchange of physical cues during coordinated movements

March 22, 2018
When two people coordinate their movements, such as by holding hands or moving furniture, they exchange physical cues through the objects that connect them. New research published in PLOS Computational Biology suggests that ...

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).

Flow of spinal fluid disrupted in inherited developmental disorder

March 22, 2018
Scientists have pinpointed the mechanism behind hydrocephalus, an accumulation of cerebrospinal fluid around the brain, in an inherited developmental disorder called Noonan syndrome.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.