Researchers find brain activity related to individual differences in reading comprehension

November 6, 2013

What makes a good reader? First, you have to know how to read the words on a page and understand them—but there's a higher-level step to reading comprehension. You have to tie together the words over time, maintaining their order and meaning in your memory, so that you can understand phrases, sentences, paragraphs and extended texts.

Northwestern University researchers were interested in exploring the underlying this higher-level integration step. Through the use of an EEG to measure brainwaves, they were able to predict with almost 90 percent accuracy based on the brain activity differences between ordered and scrambled story texts.

Participants read two versions of a long text presented one word at a time on a computer monitor. One version was in the original order of the story, the other version was in a scrambled order. In each case, participants read the words in order to perform a word-finding task. However, only in the ordered version of the story were they also asked to comprehend the story in preparation for a comprehension test.

The researchers figured that for people who read each word in the ordered version of the story and tried to tie the words together to form a story but didn't comprehend the story well, their brain activity would not differ much between the two versions of the story. Good comprehenders, on the other hand, should show distinctly different brain activity when they were successfully tying together and remembering the story in the ordered version versus when the words were scrambled.

"We used a computational algorithm called a random-forest ensemble to identify neural activity that differentiated good from poor reading comprehenders. This activity was focused at EEG electrodes toward the front of the head," said Julia Mossbridge, lead author of the study and research associate in psychology at Northwestern.

Previous research in this area has examined the brain activity surrounding comprehension of sentences and short passages. Consequently, the most significant finding of the study, Mossbridge said, is that she and her colleagues have developed a method, using longer texts, to get to the integration process in reading comprehension.

"Individuals with reading comprehension deficits in the absence of other reading deficits are almost surely lacking in this higher-level integration skill of tying the words together and maintaining the integrated meaning over time," Mossbridge said. "We hope that our novel paradigm and the result showing the for differentiating good from poor comprehenders could potentially be used to help diagnose and eventually treat reading disorders."

In addition to Mossbridge, co-authors include Marcia Grabowecky, Ken A. Paller and Satoru Suzuki of Northwestern. The article "Neural activity tied to reading predicts individual differences in extended-text " will appear in Frontiers in Human Neuroscience.

Explore further: E-readers more effective than paper for dyslexic readers

Related Stories

E-readers more effective than paper for dyslexic readers

September 18, 2013
As e-readers grow in popularity as convenient alternatives to traditional books, researchers at the Smithsonian have found that convenience may not be their only benefit. The team discovered that when e-readers are set up ...

Getting your message across

July 16, 2012
Far from processing every word we read or hear, our brains often do not even notice key words that can change the whole meaning of a sentence, according to new research from the Economic and Social Research Council (ESRC).

Recommended for you

Neuroscientists build case for new theory of memory formation

October 23, 2017
Learning and memory are generally thought to be composed of three major steps: encoding events into the brain network, storing the encoded information, and later retrieving it for recall.

Running on autopilot: Scientists find important new role for 'daydreaming' network

October 23, 2017
A brain network previously associated with daydreaming has been found to play an important role in allowing us to perform tasks on autopilot. Scientists at the University of Cambridge showed that far from being just 'background ...

Rhythm of memory: Inhibited neurons set the tempo for memory processes

October 23, 2017
The more we know about the billions of nerve cells in the brain, the less their interaction appears spontaneous and random. The harmony underlying the processing of memory contents has been revealed by Prof. Dr. Marlene Bartos' ...

Researchers demonstrate 'mind-reading' brain-decoding tech

October 23, 2017
Researchers have demonstrated how to decode what the human brain is seeing by using artificial intelligence to interpret fMRI scans from people watching videos, representing a sort of mind-reading technology.

Research revises our knowledge of how the brain learns to fear

October 23, 2017
Our brains wire themselves up during development according to a series of remarkable genetic programs that have evolved over millions of years. But so much of our behavior is the product of things we learn only after we emerge ...

Scientists use supercomputer to search for "memory molecules"

October 23, 2017
Until now, searching for genes related to memory capacity has been comparable to seeking out the proverbial "needle in a haystack." Scientists at the University of Basel made use of the CSCS supercomputer Piz Daint to discover ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.