A study on cell migration provides insights into the movement of cancer cells

November 21, 2013
A study on cell migration provides insights into the movement of cancer cells
This image shows trachea development in the Drosophila fly; the leading cell (Green) is dragging the group of six cells (red). Credit: Gaëlle Lebreton, IRB Barcelona

Jordi Casanova, head of the "Morphogenesis in Drosophila" lab at IRB Barcelona and CSIC research professor, and Gaëlle Lebreton, postdoctoral fellow in the same group, have published a study performed using Drosophila melanogaster in the Journal of Cell Science. This work reveals that in a multiple movement, a single cell can act as the leader and can drag the rest with it. The scientists have studied the tracheal development of Drosophila in vivo and describe the morphological characteristics of the leading cell and provide molecular details about how it drives the movement.

"Cancer researchers are keen to know how cells are organized to achieve migration and to form new capillaries to feed an expanding cancerous tumor," explains Gaëlle Lebreton, first author of the article. "Our study gives new data about how might arise," comments the French scientist at IRB Barcelona. Angiogenesis or the formation of new blood vessels is a critical process in the context of cancer because it is one of the steps that mark the transformation of a benign tumour into a malignant one. The formation of new blood vessels involves the synchronized movements of groups of cells. In this regard, understanding how these groups work will open up new research lines on angiogenesis.

Over seven hours, the scientists tracked a group of seven that form one of the tracheal branches of the fly Drosophila melanogaster in its first hours of development. The leading cell is the only one that has receptors for the growth factor FGF. The FGF signal stimulates a cascade of reactions in this cell in order to generate sufficient energy and to turn it into the promoter of motility.

"This is a novel piece of work because we monitored the entire process in vivo and because it is the first time we have seen, in an experimental context, that a single cell can lead this multiple migration," says Casanova.

This is an image of a Drosophila embryo showing the tracheal branches in green. Credit: Gaëlle Lebreton, IRB Barcelona

It is important to note that the development of trachea in the Drosophila fly is similar to that of bronchia in humans. Consequently, this development is also of biomedical interest in order to unravel the basic processes involved in the formation of new tissue.

Explore further: New target for the fight against cancer as a result of excessive blood vessel formation

More information: Specification of leading and trailing cell features during collective migration in the Drosophila trachea Lebreton G, Casanova J. Journal of Cell Science, 2013.

Related Stories

New target for the fight against cancer as a result of excessive blood vessel formation

August 1, 2013
New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor. To date, the success of these treatments ...

Recommended for you

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.