Where and how are fear-related behaviors and anxiety disorders controlled?

November 21, 2013

Using an approach combining in vivo recordings and optogenetic manipulations in mice, the researchers succeeded in showing that the inhibition of parvalbumin-expressing prefrontal interneurons triggers a chain reaction resulting in fear behaviour. Conversely, activation of these parvalbumin interneurons significantly reduces fear responses in rodents.

The research is published in the journal Nature.

Some may lead to the development of severe medical conditions such as or (PTSD). Anxiety disorders have a prevalence of approximately 18% worldwide. Despite successful treatments, some patients relapse, and the original symptoms reappear over time (fear of crowds, recurring nightmares, etc.). An understanding of the neuronal structures and mechanisms involved in this spontaneous recovery of traumatic responses is essential.

All observations made by researchers indicate that fear behaviours are controlled in the forebrain at the level of the dorsomedial . This control of fear behaviour is based on the activation of neurons in the prefrontal cortex that are in contact with specific areas of the amygdala.

Using an innovative approach combining electrophysiological recording techniques, optogenetic manipulations and behavioural approaches, the researchers were able to demonstrate that fear expression is related to the of highly specific interneurons—the parvalbumin-expressing prefrontal interneurons.

More specifically, inhibition of their activity disinhibits the activity of the prefrontal projection neurons, and synchronises their action.

Synchronisation of the activity of different neuronal networks in the brain is a fundamental process in the transmission of detailed information and the triggering of appropriate behavioural responses. Although this synchronisation had been demonstrated as crucial to sensory, motor and cognitive processes, it had not yet been examined in relation to the circuits involved in controlling emotional behaviour.

"Our results identify two complementary neuronal mechanisms mediated by these specific interneurons, which accurately coordinate and increase the neuronal activity of prefrontal projection neurons, leading to fear expression," explains Cyril Herry.

The identification and better understanding of these neuronal circuits controlling fear behaviour should allow the development of new treatment strategies for conditions such as posttraumatic stress disorder and anxiety disorders. "We could, for example, imagine the development of individual markers for these specific neurons, or the use of transmagnetic stimulation approaches to act directly on excitatory or inhibitory cells and reverse the phenomena."

How is fear analysed in an animal?

From an experimental standpoint, the classic Pavlovian conditioning procedure involves associating one stimulus, such as a sound, with another, unpleasant stimulus, such as a small electric shock. This first step allows the animal to establish a persistent aversive memory. In other words, the animal comes to remember and learn that the sound is associated with an unpleasant state, and an immobility response is routinely triggered, which is a good indication of fear in an animal.

In the second step, the extinction procedure involves repeated presentation of the sound alone, inducing a temporary inhibition of the conditioned fear responses. This inhibition is only temporary, as the mere passage of time favours the spontaneous recovery of the conditioned , which, from the clinical standpoint, may be associated with the phenomenon of relapse into traumatic responses seen following the treatment of posttraumatic stress disorder using exposure-based therapies.

Explore further: Study offers new insight for preventing fear relapse after trauma

More information: Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression, Nature, 2013. dx.doi.org/10.1038/nature12755

Related Stories

Study offers new insight for preventing fear relapse after trauma

November 29, 2011
(Medical Xpress) -- In a new study, University of Michigan researchers identified brain circuits in rats that are responsible for the return of fear after it has been suppressed behaviorally.

Neuroscientists determine how treatment for anxiety disorders silences fear neurons

November 1, 2013
(Medical Xpress)—Excessive fear can develop after a traumatic experience, leading to anxiety disorders such as post-traumatic stress disorder and phobias. During exposure therapy, an effective and common treatment for anxiety ...

Neuroscientists identify class of cortical inhibitory neurons that specialize in disinhibition

October 6, 2013
New research now reveals that one class of inhibitory neurons—called VIP interneurons—specializes in inhibiting other inhibitory neurons in multiple regions of cortex, and does so under specific behavioral conditions. ...

Fighting phobias involves creation of 'competing' memories

October 22, 2012
Most people have a fear of something but for 1 in 10 people, fear can turn into a phobia. The most common phobias being a fear of spiders, snakes, heights, the dark, being in crowds or tight spaces, animals and people. Then ...

Memory appears susceptible to eradication of fear responses

February 18, 2013
Fear responses can only be erased when people learn something new while retrieving the fear memory. This is the conclusion of a study conducted by scientists from the University of Amsterdam (UvA) and published in the leading ...

The neurological basis for fear and memory

June 18, 2012
Fear conditioning using sound and taste aversion, as applied to mice, have revealed interesting information on the basis of memory allocation.

Recommended for you

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

New study reveals contrasts in how groups of neurons function during decision making

July 19, 2017
By training mice to perform a sound identification task in a virtual reality maze, researchers at Harvard Medical School and the Istituto Italiano di Tecnologia (IIT) have identified striking contrasts in how groups of neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.