Neuroscientists determine how treatment for anxiety disorders silences fear neurons

November 1, 2013

(Medical Xpress)—Excessive fear can develop after a traumatic experience, leading to anxiety disorders such as post-traumatic stress disorder and phobias. During exposure therapy, an effective and common treatment for anxiety disorders, the patient confronts a fear or memory of a traumatic event in a safe environment, which leads to a gradual loss of fear. A new study in mice, published online today in Neuron, reports that exposure therapy remodels an inhibitory junction in the amygdala, a brain region important for fear in mice and humans. The findings improve our understanding of how exposure therapy suppresses fear responses and may aid in developing more effective treatments. The study, led by researchers at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts, was partially funded by a New Innovator Award from the Office of the Director at the National Institutes of Health.

A fear-inducing situation activates a small group of neurons in the amygdala. Exposure therapy silences these fear neurons, causing them to be less active. As a result of this reduced activity, fear responses are alleviated. The research team sought to understand how exactly exposure therapy silences fear neurons.

The researchers found that exposure therapy not only silences fear neurons but also induces remodeling of a specific type of inhibitory junction, called the perisomatic synapse. Perisomatic are connections between neurons that enable one group of neurons to silence another group of neurons. Exposure therapy increases the number of perisomatic inhibitory synapses around fear neurons in the amygdala. This increase provides an explanation for how exposure therapy silences fear neurons.

"The increase in number of perisomatic inhibitory synapses is a form of remodeling in the brain. Interestingly, this form of remodeling does not seem to erase the memory of the fear-inducing event, but suppresses it," said senior author, Leon Reijmers, Ph.D., assistant professor of neuroscience at Tufts University School of Medicine and member of the neuroscience program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts.

Reijmers and his team discovered the increase in perisomatic inhibitory synapses by imaging neurons activated by fear in genetically manipulated mice. Connections in the human brain responsible for suppressing fear and storing fear memories are similar to those found in the mouse brain, making the mouse an appropriate model organism for studying fear circuits.

Mice were placed in a box and experienced a fear-inducing situation to create a fear response to the box. One group of mice, the control group, did not receive exposure therapy. Another group of mice, the comparison group, received exposure therapy to alleviate the fear response. For exposure therapy, the comparison group was repeatedly placed in the box without experiencing the fear-inducing situation, which led to a decreased fear response in these mice. This is also referred to as fear extinction.

The researchers found that mice subjected to exposure therapy had more perisomatic inhibitory synapses in the amygdala than mice who did not receive exposure therapy. Interestingly, this increase was found around fear neurons that became silent after exposure therapy.

"We showed that the remodeling of perisomatic inhibitory synapses is closely linked to the activity state of fear . Our findings shed new light on the precise location where mechanisms of fear regulation might act. We hope that this will lead to new drug targets for improving exposure therapy," said first author, Stéphanie Trouche, Ph.D., a former postdoctoral fellow in Reijmers' lab at Tufts and now a medical research council investigator scientist at the University of Oxford in the United Kingdom.

"Exposure therapy in humans does not work for every patient, and in patients that do respond to the treatment, it rarely leads to a complete and permanent suppression of . For this reason, there is a need for treatments that can make more effective," Reijmers added.

Explore further: First evidence that fear memories can be reduced during sleep

More information: Trouche, S., Sasaki, J.M., Tu, T., Reijmers, L.G. (Online October 31, 2013; print edition November 20, 2013). Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses, Neuron, 80 (4). DOI: 10.1016/j.neuron.2013.07.047

Related Stories

First evidence that fear memories can be reduced during sleep

September 22, 2013
A fear memory was reduced in people by exposing them to the memory over and over again while they slept. It's the first time that emotional memory has been manipulated in humans during sleep, report Northwestern Medicine ...

Study offers new insight for preventing fear relapse after trauma

November 29, 2011
(Medical Xpress) -- In a new study, University of Michigan researchers identified brain circuits in rats that are responsible for the return of fear after it has been suppressed behaviorally.

Neuroscientists pinpoint location of fear memory in amygdala

January 28, 2013
A rustle of undergrowth in the outback: it's a sound that might make an animal or person stop sharply and be still, in the anticipation of a predator. That "freezing" is part of the fear response, a reaction to a stimulus ...

Do antidepressants impair the ability to extinguish fear?

June 10, 2013
An interesting new report of animal research published in Biological Psychiatry suggests that common antidepressant medications may impair a form of learning that is important clinically.

Researchers develop procedure for reducing fear response in sleeping mice

October 19, 2012
(Medical Xpress)—Researchers at Stanford University have developed a procedure that reduces a fear response in mice. It involves, team lead Asya Rolls said as she presented the groups' findings at this year's meeting of ...

Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice

September 13, 2013
The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have important consequences, ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.