Hybrid heart valve is strong, durable in early tests

A hybrid heart valve created from thin and highly elastic mesh embedded within layers of human cells was strong and durable in a study presented at the American Heart Association's Scientific Sessions 2013.

Researchers created a three-dimensional cell culture by coating a scaffold of nickel-titanium alloy (Nitinol), used for devices that require flexibility and motion, with layers of smooth muscle, and lining cells. The valves performed well in a heart simulator, opening and closing under various pressures and remaining stable and strong throughout the tests.

A durable, regenerating hybrid heart valve would be an important advance because previous attempts to create tissue-engineered heart valves from patients' cells have been unsatisfactory. All the prior methods entail significant limitations due to structural vulnerability, short-term functionality and mechanical properties of the tissue-engineered valves.


Explore further

Clotting protein hardens aging hearts: Researchers link von Willebrand factor to heart-valve calcium deposits

Citation: Hybrid heart valve is strong, durable in early tests (2013, November 18) retrieved 20 July 2019 from https://medicalxpress.com/news/2013-11-hybrid-heart-valve-strong-durable.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more