Researchers creating next generation prosthetic heart valves

September 18, 2013

Researchers in the School of Biomedical Engineering and the Department of Mechanical Engineering at Colorado State University are working on developing replacement heart valves that will be superior to current mechanical and tissue-based heart valves and reduce patients' need for medication to prevent blood clots.

Supported by a five-year, $1.8 million grant from the National Institutes of Health, Assistant Professor and Principal Investigator Lakshmi Prasad Dasi leads a research team creating revolutionary that incorporate state-of-the-art engineering and design. The result will be a new family of heart valves made from addressing the problems associated with both mechanical and bioprosthetic or tissue-based valves.

"All present-day replacement heart valves suffer from significant drawbacks," explained Dasi, whose expertise is in heart-valve engineering and cardiovascular biomechanics. "Patients who receive mechanical heart valves must remain on lifelong medication to prevent blood clotting. On the other hand, bioprosthestic valves, usually made from tissue from cows or pigs, are prone to hardening over time and don't last more than 10 to 15 years. The valves to be developed in this project will be made from synthetic containing , a molecule found in any soft tissue, with a structure optimized for superior performance over a much longer period of time."

Co-investigators on the project are Susan James, head of the Department of Mechanical Engineering and an expert in polymer synthesis, and associate professor Ketul C. Popat, an expert in bio-compatibility and surface nano-engineering. Together with Dasi, they invented the that is at the heart of this project.

"We acknowledge that much of the groundwork for this project would not have been possible without the tools developed under my National Scientist Development Grant focused on heart valve disease, from the American Heart Association, and Dr. James's proof-of-concept award from the Colorado Office of Economic Development and International Trade," Dasi said.

The engineering team is also working with Dr. Christopher Orton, a veterinary cardiothoracic surgeon and head of the Department of Clinical Sciences in the College of Veterinary Medicine and Biomedical Sciences at CSU, who will implant prototype valves in pigs and sheep as part of the pre-clinical evaluation.

"In addition to superior performance when implanted in patients, the next generation synthetic material heart valves will allow for easy automated manufacturing, as opposed to the laborious process currently used to manufacture tissue valves," Dasi said. "This would enhance the consistency while reducing cost of the device, which will become increasingly important in the coming years as demand grows for a replacement valve that will last a lifetime without the need for continuous anti-clotting medication. Currently, over 290,000 heart valve procedures are performed annually worldwide, and that number is estimated to triple to over 850,000 by 2050, an expansion rate of 10 percent to 12 percent per year."

In addition to heart valves, the team hopes their innovative strategy to reduce the need for anti-clotting medication will find applications in any medical devices where manmade surfaces come in contact with blood flow, such as implanted stents, ventricular assist devices, extra-corporeal circuits, and heart-lung and dialysis machines.

"Further, our goal is to translate this new paradigm to also engineer next-generation minimally invasive heart valves," Dasi added.

Research on developing the new and improved heart valves began last month in the new Suzanne and Walter Scott, Jr. Bioengineering Building on the CSU campus.

"All of our labs are next to each other," Popat said. "The advantages of being co-located for us as researchers—as well as for the graduate and undergraduate students who are learning some very practical aspects of applied science – are already obvious."

Explore further: FDA: Pradaxa not for patients with mechanical heart valves

Related Stories

FDA: Pradaxa not for patients with mechanical heart valves

December 21, 2012
(HealthDay)—The blood thinner Pradaxa should not be used to prevent stroke or blood clots in patients with mechanical heart valves, the U.S. Food and Drug Administration said in a warning issued Wednesday.

New design for mechanical heart valves

November 22, 2011
The heart's valves, which guarantee the unidirectional flow of blood from one chamber to another, are asymmetrical. For example, the two flaps of the heart's mitral valve – which regulates blood flow between the left ...

Computer simulations of blood flow through mechanical heart valves could pave the way for more individualized prosthetic

December 19, 2012
Every year, over 300,000 heart valve replacement operations are performed worldwide. Diseased valves are often replaced with mechanical heart valves (MHVs), which cannot yet be designed to suit each patient's specific needs. ...

TAVI is safe alternative to redo cardiac surgery

September 2, 2013
TAVI is a safe alternative to redo cardiac surgery for failing bioprosthetic valves, according to research presented at the ESC Congress today by Dr. Spyridon Katsanos from the Netherlands. The findings suggest that transcatheter ...

Mitral valve repair with bypass surgery may improve heart function

February 29, 2012
Patients who had leaky mitral heart valves repaired along with bypass surgery had with healthier hearts than those who had bypass only, according to new research presented in the American Heart Association's Emerging Science ...

Minimally-invasive failed biological aortic valve replacement successful in high risk patients

May 6, 2013
When a biologic aortic valve prosthesis fails, the patient often faces a high risk valve replacement through repeat open heart surgery. A new technique, known as Valve-in-Valve, uses minimally invasive techniques to introduce ...

Recommended for you

Cholesterol crystals are sure sign a heart attack may loom

August 17, 2017
A new Michigan State University study on 240 emergency room patients shows just how much of a role a person's cholesterol plays, when in a crystallized state, during a heart attack.

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Injectable tissue patch could help repair damaged organs

August 14, 2017
A team of U of T Engineering researchers is mending broken hearts with an expanding tissue bandage a little smaller than a postage stamp.

'Fat but fit' are at increased risk of heart disease

August 14, 2017
Carrying extra weight could raise your risk of heart attack by more than a quarter, even if you are otherwise healthy.

Air pollution linked to cardiovascular disease; air purifiers may lessen impact

August 14, 2017
Exposure to high levels of air pollution increased stress hormone levels and negative metabolic changes in otherwise healthy, young adults in a recent study conducted in China. Air purifiers appeared to lessen the negative ...

Study hints at experimental therapy for heart fibrosis

August 14, 2017
Researchers report encouraging preclinical results as they pursue elusive therapeutic strategies to repair scarred and poorly functioning heart tissues after cardiac injury—describing an experimental molecular treatment ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.