First large-scale PheWAS study using EMRs provides systematic method to discover new disease association

November 25, 2013

Vanderbilt University Medical Center researchers and co-authors from four other U.S. institutions from the Electronic Medical Records and Genomics (eMERGE) Network are repurposing genetic data and electronic medical records to perform the first large-scale phenome-wide association study (PheWAS), released today in Nature Biotechnology.

Traditional genetic studies start with one phenotype and look at one or many genotypes, PheWAS does the inverse by looking at many diseases for one genetic variant or genotype.

"This study broadly shows that we can take decades of off-the-shelf data, link them to DNA, and quickly validate known associations across hundreds of previous studies," said lead author Josh Denny, M.D., M.S., Vanderbilt Associate Professor of Biomedical Informatics and Medicine. "And, at the same time, we can discover many new associations.

"A third important finding is that our method does not select any particular disease - it is searches simultaneously for more than a thousand diseases that bring one to the doctor. By doing this, we were able to show some genes that are associated several diseases or traits, while others are not," he added.

Researchers used genotype data from 13,835 individuals of European descent, exhibiting 1,358 diseases collectively. The team then ran PheWAS on 3,144 single-nucleotide polymorphisms (SNP's), checking each SNP's association with each of the 1,358 disease phenotypes.

As a result, study authors reported 63 previously unknown SNP-disease associations, the strongest of which related to .

The video will load shortly
Vanderbilt University Medical Center researchers and co-authors from four other US institutions from the Electronic Medical Records and Genomics Network are repurposing genetic data and electronic medical records to perform the first large-scale phenome-wide association study, released today in Nature Biotechnology. Credit: Video courtesy of Vanderbilt University

"The key result is that the method works," Denny said. "This is a robust test of PheWAS across all domains of disease, showing that you can see all types of phenotypes in the electronic medical record—cancers, diabetes, heart diseases, brain diseases, etc.—and replicate what's known about their associations with various SNPs."

An online PheWAS catalog spawned by the study may help investigators understand the influence of many common genetic variants on human conditions.

"If you think about the way genetic research has been done for the last 50 years or more, a lot of it was done through carefully planned clinical trials or observational cohorts," Denny said. "This certainly does not supplant those in any way but provides a cost efficient, systematic method to look at many different diseases over time in a way that you really can't do easily with an observational cohort."

Denny said PheWAS would be unworkable without the eMERGE Network, which has now expanded to nine sites with DNA samples from about 51,000 individuals linked to . Vanderbilt is the coordinating center for eMERGE. The eMERGE Network is funded by the National Human Genome Research Institute.

"PheWAS opens up important avenues in understanding why certain diseases can present differently in different people, or how drugs might produce unpredicted effects in some patients," said senior author Dan Roden, M.D., assistant vice chancellor for Personalized Medicine, and principal investigator for the Vanderbilt eMERGE site.

Explore further: Study finds gene network associated with alcohol dependence

Related Stories

Study finds gene network associated with alcohol dependence

November 21, 2013

There is good evidence from studies of families and twins that genetics plays an important role in the development of alcoholism. However, hundreds of genes likely are involved in this complex disorder, with each variant ...

Electronic medical records speed genetic health studies

April 20, 2011

Recruiting thousands of patients to collect health data for genetic clues to disease is expensive and time consuming. But that arduous process of collecting data for genetic studies could be faster and cheaper by instead ...

A genetic map for complex diseases

September 26, 2013

Although heavily studied, the specific genetic causes of "complex diseases," a category of disorders which includes autism, diabetes and heart disease, are largely unknown due to byzantine genetic and environmental interactions.

New approach for efficient analysis of emerging genetic data

September 6, 2012

(Medical Xpress)—With the ability to sequence human genes comes an onslaught of raw material about the genetic characteristics that distinguish us, and wading through these reserves of data poses a major challenge for life ...

Recommended for you

Gene science closes in on endometriosis

May 25, 2017

In the world's largest study into the genetic causes of endometriosis, University of Queensland researchers have helped identify five new gene regions linked to the disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.