Research reveals possible cause of diabetic cardiomyopathy

November 6, 2013, University of Texas Medical Branch at Galveston

Researchers from the University of Texas Medical Branch at Galveston have discovered one of the pathogenic components of diabetes in the heart, as published in the Journal of Biological Chemistry.

While both disease and diabetes are widely studied, how diabetic cardiomyopathy develops is not well understood, other than that it seemed to be linked to protein kinase C (PKC)—a family of enzymes that controls the functions of other proteins by using phosphates to turn them on and off.

Researchers at UTMB, led by assistant professor of biochemistry Dr. Muge Kuyumcu-Martinez, studied the effects of PKC signals in the hearts of .

"We now know that the leading cause of diabetic cardiomyopathy can be attributed to PKC activation and its downstream effects on gene expression," said Kuyumcu-Martinez. "Knowing how cardiomyopathy manifests, further research can use these results to concentrate on the prevention and treatment of heart failure in diabetics."

Cardiomyopathy, a known symptom of diabetes, occurs when the muscles of the heart weaken, and the heart is no longer strong enough to pump blood and properly circulate it throughout the body. Adults with diabetes are two to four times more likely to die of than the rest of the population.

The researchers discovered that when PKC is over-activated, the cells of the adult heart revert to splicing methods used during the embryonic stages. Genes contain codes for certain processes and products, such as proteins, and they send signals to the body to complete these processes and products through messenger RNA. Alternative splicing occurs when one gene contains the codes for multiple proteins. The human genome contains 20,000 protein-coding genes, so using one gene to create more than one protein is an efficient process—when it's running correctly. But problems occur when the genetic information is abnormally spliced or mis-spliced to messenger RNA, giving it mutated instructions. As much as one-third of genetic disease and many cancers are attributed to splicing changes.

In the case of , the research team used RNA sequencing technology to identify 22 specific alternative splicing events that occur, causing a developmental shift in the . This shift causes mechanisms of the heart to behave as though it were still an embryo, which prevents the heart from functioning correctly in a full-grown adult fighting .

Explore further: The leading cause of death for diabetics: Getting to the heart of problem

Related Stories

The leading cause of death for diabetics: Getting to the heart of problem

February 13, 2012
Millions of people suffer from type 2 diabetes. The leading cause of death in these patients is heart disease. Joseph Hill and colleagues, at the University of Texas Southwestern Medical Center, Dallas, have now identified, ...

Scientists elucidate molecular mechanism contributing to cardiomyopathy

April 1, 2012
Cardiomyopathy comprises a deterioration of the heart muscle that affects the organ's ability to efficiently pump blood through the body. Previously researchers have tied forms of the disease to the alternative splicing of ...

Aberrant splicing saps the strength of 'slow' muscle fibers

July 29, 2013
When you sprint, the "fast" muscle fibers give you that winning kick. In a marathon or just day-to-day activity, however, the "slow," or type 1 fibers, keep you going for hours.

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.