Scientists fingerprint single cancer cells to map cancer's family tree

November 18, 2013

A new method to take the DNA fingerprint of individual cancer cells is uncovering the true extent of cancer's genetic diversity, new research reveals.

The technique can identify the founding from which a tumour evolved and then uses computer software to draw a map of the 's family tree.

Scientists at The Institute of Cancer Research, London, and the Wellcome Trust Sanger Institute used DNA sequencing to identify a panel of mutations present across thousands of in three patients with leukaemia. They then tested hundreds of individual cancer cells for each of the mutations to determine their genetic fingerprint and place them into cancer's family tree.

The study found that each patient's cancer had a distinct family tree, with a unique series of mutations driving their growth.

The findings could be used to identify the key mutations that occur early in the development of tumours, allowing doctors to use targeted treatments more effectively.

The study, published in the journal Genome Research, was funded by Leukaemia and Lymphoma Research, the Kay Kendall Leukaemia Fund, The Institute of Cancer Research (ICR), and the Wellcome Trust.

Tumours grow through a process of Darwinian evolution, where cancer cells develop an advantageous mutation that allows them to survive and multiply, producing a population of cells which can mutate further.

Sequencing the whole genome of a cancer provides a tally of the many mutations that accumulate within it, but can fail to identify where mutations have branched off the evolutionary tree to produce distinct sub-populations of cells.

Targeted cancer treatments are designed to attack molecules produced by mutations, but if the targeted mutation occurs on an evolutionary branch and not the trunk, the treatment will fail as other branches dominate and treatment resistant cells spread.

The new technique used software to assign the cancer cell with the fewest mutations as the ancestral clone and place it at the root of the evolutionary , with the other clones arranged as branches above it.

Professor Mel Greaves, Professor of Cell Biology at The Institute of Cancer Research, said:

"The diversity of genetics within individual cancers reveals the otherwise hidden evolutionary histories of cancer cells. Our research highlights how mutations distribute into branching patterns that are unique to each patient. The diversity of these evolutionary tree structures helps explain why advanced cancer can be so resilient to treatment."

Professor Alan Ashworth, Chief Executive of The Institute of Cancer Research, said:

"The evolution of can be a problem for targeted therapy. If we can understand how this happens we may be able to devise better methods of treatment that slow or avoid relapse after treatment."

Dr Elli Papaemmanuil from the Cancer Genome Project at the Wellcome Trust Sanger Institute said: "Single cell genomics, the genetic study of individual cells, is becoming increasingly important for . It allows us to decipher the order and timings of mutation acquisitions, as well as providing insights into the biological mechanisms or exposures that result in mutations."

Professor Chris Bunce, Research Director at Leukaemia & Lymphoma Research, said: "We are beginning to understand how unique and complex each patient's cancer is and the profound implications that this can have on the success of treatment. By cataloguing the variety of genetic faults found in hundreds of individual leukaemia cells in each patient, this study significantly advances our understanding of how cancers start and evolve. The efficient and accurate methods developed could be used in leukaemia and other cancers to predict how an individual's disease will progress, guide the personalised choice of treatment to target cancer at its root and monitor the risk of it coming back."

Explore further: Researchers discover genetic imprints and signatures left by DNA-damaging processes that lead to cancer

More information: Potter NE, Ermini L, Papaemmanuil E, Cazzaniga G, Vijayaraghavan G, Titley I, Ford A, Campbell P, Kearney L, Greaves M. Single cell mutational profiling and clonal phylogeny in cancer. Genome Res in advance September 20 2013, DOI: 10.1101/gr.159913.113

Related Stories

Researchers discover genetic imprints and signatures left by DNA-damaging processes that lead to cancer

August 14, 2013
Researchers have provided the first comprehensive compendium of mutational processes that drive tumour development. Together, these mutational processes explain most mutations found in 30 of the most common cancer types. ...

Landscape of cancer genes and mutational processes in breast cancer

May 16, 2012
In a study published today in Nature, researchers describe nine new genes that drive the development of breast cancer. This takes the tally of all genes associated with breast cancer development to 40.

Working towards a personalized cancer treatment

November 12, 2013
Extensive statistical analyses of the mutation distribution in several thousand cancerous tumours make it possible to find cures for types of cancer that cannot be treated today.

Mutations in cancer often affect the X chromosome

October 18, 2013
Every case of cancer originates from changes in a person's genetic material (mutations). These usually occur as "somatic mutations" in individual cells during an individual's lifetime, rather than being inherited from a person's ...

Researchers develop software tool for cancer genomics

August 26, 2013
Researchers at the Medical College of Wisconsin (MCW) have developed a new bioinformatics software tool designed to more easily identify genetic mutations responsible for cancers. The tool, called DrGaP, is the subject of ...

Scientists uncover potential drug target to nip cancer in the bud

November 8, 2013
Scientists at A*STAR have discovered an enzyme, Wip1 phosphatase, as a potential target to weed out the progression of cancer. Although studies in the past have revealed that this enzyme plays a critical role in regulating ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.