Researchers discover genetic imprints and signatures left by DNA-damaging processes that lead to cancer

August 14, 2013, Wellcome Trust Sanger Institute

Researchers have provided the first comprehensive compendium of mutational processes that drive tumour development. Together, these mutational processes explain most mutations found in 30 of the most common cancer types. This new understanding of cancer development could help to treat and prevent a wide-range of cancers.

Each mutational process leaves a particular pattern of mutations, an imprint or signature, in the genomes of cancers it has caused. By studying 7,042 genomes of people with the most common forms of cancer, the team uncovered more than 20 signatures of processes that mutate DNA. For many of the signatures, they also identified the underlying responsible.

All cancers are caused by mutations in DNA occurring in cells of the body during a person's lifetime. Although we know that chemicals in tobacco smoke cause mutations in that lead to lung cancers and ultraviolet light causes mutations in that lead to skin cancers, we have remarkably little understanding of the biological processes that cause the mutations which are responsible for the development of most cancers.

"We have identified the majority of the mutational signatures that explain the genetic development and history of cancers in patients," says Ludmil Alexandrov first author from the Wellcome Trust Sanger Institute. "We are now beginning to understand the complicated biological processes that occur over time and leave these residual mutational signatures on cancer genomes."

All of the cancers contained two or more signatures, reflecting the variety of processes that work together during the development of cancer. However, different cancers have different numbers of mutational processes. For example, two mutational processes underlie the development of , while six mutational processes underlie the development of . Some of the mutational signatures are found in multiple cancer types, while others are confined to a single cancer type. Out of the 30 cancer types, 25 had signatures arising from age-related mutational processes. Another signature, caused by defects in repairing DNA due to mutations in the breast cancer susceptibility genes BRCA1 and 2, was found in breast, ovarian and pancreatic cancers.

"Through detailed analysis, we can start to use the overwhelming amounts of information buried deep in the DNA of cancers to our advantage in terms of understanding how and why cancers arise. ," says Dr Serena Nik-Zainal, author from the Wellcome Trust Sanger Institute. "Our map of the events that cause the majority of cancers in humans is an important step to discovering the processes that drive cancer formation."

The team found that a family of enzymes, which is known to "edit" (ie mutate) DNA, was linked to more than half of the . These enzymes, known as APOBECs, can be activated in response to viral infections. It may be that the resulting signatures are collateral damage on the human genome caused by the enzymes' actions to protect cells from viruses.

Recently, the research team described a remarkable pattern of mutation in breast cancer whereby small regions of the are deluged with mutations. They now show that this process, known as kataegis, is present in most cancers. Researchers speculate that the onset of kataegis may also be linked to the activation of APOBEC enzymes.

"We have uncovered the archaeological traces within genomes of the diverse mutational processes that lead to the development of most cancers," says Professor Sir Mike Stratton, lead author and Director of the Wellcome Trust Sanger Institute. "This compendium of mutational signatures and the consequent insights into the mutational processes underlying them has profound implications for the understanding of with potential applications in disease prevention and treatment."

Explore further: Computer model helps researchers hunt out cancer-causing mutational signatures in the genome

More information: Ludmil B. Alexandrov, Serena Nik-Zainal, David C. Wedge, et al (2013) ''Signatures of mutational processes in human cancer' Advanced online publication in Nature on 14 August 2013. DOI: 10.1038/nature12477

Related Stories

Computer model helps researchers hunt out cancer-causing mutational signatures in the genome

January 11, 2013
(Medical Xpress)—Researchers from the Wellcome Trust Sanger Institute's cancer genome project have developed a computer model to identify the fingerprints of DNA-damaging processes that drive cancer development. Armed with ...

Landscape of cancer genes and mutational processes in breast cancer

May 16, 2012
In a study published today in Nature, researchers describe nine new genes that drive the development of breast cancer. This takes the tally of all genes associated with breast cancer development to 40.

Researchers announce the first comprehensive genome studies of the evolution of 21 breast cancers

May 17, 2012
In two back-to-back reports published online on 17 May in Cell, researchers have sequenced the genomes of 21 breast cancers and analysed the mutations that emerged during the tumours' development. The individual results are ...

Scientists use genome sequencing to prove herbal remedy causes upper urinary tract cancers

August 7, 2013
Genomic sequencing experts at Johns Hopkins partnered with pharmacologists at Stony Brook University to reveal a striking mutational signature of upper urinary tract cancers caused by aristolochic acid, a plant compound contained ...

Researchers identify four distinct mechanisms that contribute to gastric cancers

January 28, 2013
Scientists at A*STAR's Genome Institute of Singapore (GIS) headed a study that discovered four processes by which gastric cancer is formed. This is extremely important since gastric cancer is the second most common cause ...

Research in mice identifies new treatment options for bowel cancer

July 8, 2013
Researchers have discovered the genetic processes that cause specific types of bowel cancer. Using this knowledge, they identified cancer drugs that target these genes. Their findings offer the opportunity to develop personalised ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.