Synaesthesia is more common in autism

November 19, 2013

People with autism are more likely to also have synaesthesia, suggests new research in the journal Molecular Autism.

Synaesthesia involves people experiencing a 'mixing of the senses', for example, seeing colours when they hear sounds, or reporting that evoke different tastes. Autism is diagnosed when a person struggles with and communication, and shows unusually narrow interests and resistance to change. The team of scientists from Cambridge University found that whereas only occurred in 7.2% of typical individuals, it occurred in 18.9% of people with autism.

On the face of it, this is an unlikely result, as autism and synaesthesia seem as if they should not share anything. But at the level of the brain, synaesthesia involves atypical connections between brain areas that are not usually wired together (so that a sensation in one channel automatically triggers a perception in another). Autism has also been postulated to involve over-connectivity of neurons (so that the person over-focuses on small details but struggles to keep track of the big picture).

The scientists tested – and confirmed – the prediction that if both autism and synaesthesia involve neural over-connectivity, then synaesthesia might be disproportionately common in autism.

The team, led by Professor Simon Baron-Cohen at the Autism Research Centre at Cambridge University, tested 164 adults with an autism spectrum condition and 97 adults without autism. All volunteers were screened for synaesthesia. Among the 31 people with autism who also had synaesthesia, the most common forms of the latter were 'grapheme-colour' (18 of them reported black and white letters being seen as coloured) and 'sound-colour' (21 of them reported a sound triggering a visual experience of colour). Another 18 of them reported either tastes, pains, or smells triggering a visual experience of colour.

Professor Baron-Cohen said: "I have studied both autism and synaesthesia for over 25 years and I had assumed that one had nothing to do with the other. These findings will re-focus research to examine common factors that drive brain development in these traditionally very separate conditions. An example is the mechanism 'apoptosis,' the natural pruning that occurs in early development, where we are programmed to lose many of our infant neural connections. In both autism and synaesthesia apoptosis may not occur at the same rate, so that these connections are retained beyond infancy."

Professor Simon Fisher, a member of the team, and Director of the Language and Genetics Department at Nijmegen's Max Planck Institute, added: "Genes play a substantial role in autism and scientists have begun to pinpoint some of the individual genes involved. Synaesthesia is also thought to be strongly genetic, but the specific genes underlying this are still unknown. This new research gives us an exciting new lead, encouraging us to search for genes which are shared between these two conditions, and which might play a role in how the brain forms or loses neural connections."

Donielle Johnson, who carried out the study as part of her Master's degree in Cambridge, said: "People with autism report high levels of sensory hyper-sensitivity. This new study goes one step further in identifying synaesthesia as a sensory issue that has been overlooked in this population. This has major implications for educators and clinicians designing -friendly learning environments."

Explore further: US adults with autism may face housing crisis

More information: Is synaesthesia more common in autism? Authors: Simon Baron-Cohen, Donielle Johnson, Julian Asher, Sally Wheelwright, Simon E Fisher, Peter K Gregersen, Carrie Allison. In Molecular Autism (November 1st, 2013). www.molecularautism.com/content/4/1/40

Related Stories

US adults with autism may face housing crisis

November 13, 2013
(HealthDay)—Adults with autism face a shortage of housing and support services in the United States, according to a new survey.

Autism affects different parts of the brain in women and men

August 8, 2013
Autism affects different parts of the brain in females with autism than males with autism, a new study reveals. The research is published today in the journal Brain as an open-access article.

Social symptoms in autistic children may be caused by hyper-connected neurons

November 7, 2013
The brains of children with autism show more connections than the brains of typically developing children do. What's more, the brains of individuals with the most severe social symptoms are also the most hyper-connected. ...

Synaesthesia linked to a hyper-excitable brain

November 18, 2011
(Medical Xpress) -- ‘Hyper-excitability’ in regions of the brain may underlie synaesthesia, an unusual condition where some people experience a ‘blending of the senses’, Oxford University researchers suggest.

Girls with anorexia have elevated autistic traits

August 7, 2013
(Medical Xpress)—Girls with anorexia nervosa show a mild echo of the characteristics of autism, suggests new research in the journal Molecular Autism.

Recommended for you

Signaling pathway may be key to why autism is more common in boys

October 17, 2017
Researchers aiming to understand why autism spectrum disorders (ASD) are more common in boys have discovered differences in a brain signaling pathway involved in reward learning and motivation that make male mice more vulnerable ...

Whole genome sequencing identifies new genetic signature for autism

October 12, 2017
Autism has genetic roots, but most cases can't be explained by current genetic tests.

Mum's immune response could trigger social deficits for kids with autism

October 10, 2017
The retrospective cohort study of 220 Australian children, conducted between 2011-2014, indicates that a "an immune-mediated subtype" of autism driven by the body's inflammatory and immunological systems may be pivotal, according ...

Largest study to date reveals gender-specific risk of autism occurrence among siblings

September 25, 2017
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Predicting atypical development in infants at high risk for autism?

September 12, 2017
New research from the Sackler Institute for Developmental Psychobiology at Columbia University Medical Center (CUMC) identifies a potential biomarker that predicts atypical development in 1- to 2-month-old infants at high ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.