Cancer 'avalanche effect' refuted

December 11, 2013

First, the number of chromosomes in a cell changes, then an avalanche of further mutations occur that transform the cell into a cancer cell, according to a well-known - but untested - theory. A research group at Lund University in Sweden has now shown that the theory is not correct and constitutes a dead end for research.

Cancer is due to changes in the DNA of , which causes them to divide in an uncontrolled manner. It is also true that the in certain common tumours, such as in colon cancer, can have over 100 instead of the 46 chromosomes normally present in a human cell.

But does a single, initial change in the number of chromosomes set off a sequence of unstoppable changes that lead to cancer? The answer to this question is important; in order to ensure that is on the right track.

"In our view, the answer to that question is no. We have carried out very detailed studies and have not been able to see any sign of an 'avalanche effect'", said cancer researcher and pathologist David Gisselsson from Lund University.

He and Anders Valind, a doctoral student, have studied cells from children and foetuses that have had congenital changes in the number of chromosomes. If the avalanche theory is correct, then these cells should have developed a large number of further changes as a consequence, but this was not the case.

Studying the presence of chromosomal changes that have only occurred in a few cells is difficult, which is one reason why the avalanche theory has never been tested on human cells. David Gisselsson's research group have had to refine the technology in order to conduct their study, and many control tests have been performed. "Our findings will no doubt cause a scientific debate, so we wanted to make sure that they rested on a stable foundation", said Dr Gisselsson.

Gisselsson believes the findings could lead to significant progress in cancer research. There is no longer any need to invest energy in identifying one single source of all forms of cancer, an area which David Gisselsson regards as a dead end for research. Instead, the research community can carry out targeted searches for different triggers for different types of .

"Cancer is not one disease with one trigger mechanism; it varies from one type to another and from case to case. I think our findings bring hope, because they will make it easier to develop new research tools", says David Gisselsson.

Explore further: Telomere length influences cancer cell differentiation

Related Stories

Telomere length influences cancer cell differentiation

June 27, 2013
Researchers from the Japanese Foundation for Cancer Research in Tokyo have discovered that forced elongation of telomeres (extensions on the end of chromosomes) promotes the differentiation of cancer cells, probably reducing ...

Gene plays major role in suppressing cancer

November 18, 2013
Adelaide researchers have found that a specific gene plays an important role in suppressing lymphoma, a type of blood cell cancer.

Mutations in cancer often affect the X chromosome

October 18, 2013
Every case of cancer originates from changes in a person's genetic material (mutations). These usually occur as "somatic mutations" in individual cells during an individual's lifetime, rather than being inherited from a person's ...

Novel cancer cell DNA damage repair mechanism unveils

December 10, 2013
Research with a Finnish background facilitates the development of more effective cancer medication

Recommended for you

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Drug yields high response rates for lung cancer patients with harsh mutation

October 18, 2017
A targeted therapy resurrected by the Moon Shots Program at The University of Texas MD Anderson Cancer Center has produced unprecedented response rates among patients with metastatic non-small cell lung cancer that carries ...

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.