Successful repair of bone defects using a novel tissue engineered bone graft

December 4, 2013, Society for Experimental Biology and Medicine

Researchers at the Department of Orthopaedics, of the Second Affiliated Hospital of Xi'an Jiaotong University Health Science Center, led by Dr. Kunzheng Wang and Dr. Pei Yang have developed a novel biomimetic tissue engineered bone graft based on rabbit adipose derived stem cells (rASCs), collagen I and a porous beta-tricalcium phosphate (β-TCP) scaffold. Furthermore, the critical-sized bone defects model of rabbits was used to evaluate the efficiency of the construct. This discovery, reported in the December 2013 issue of Experimental Biology and Medicine, provides a novel candidate for bone defect repair.

Although bone has the capacity for regenerative growth and remodeling, these processes are often impaired in clinical situations in which loss of bone is caused by disease, trauma or tumor resection. More than 800,000 patients receive operations annually around the world. With the rapid development and progress of material and manufacturing sciences, tissue engineered bone grafting has become a promising technique in bone defect treatment. Bone tissue engineering involves three key factors: the seeding cell, growth factors and a porous scaffold. In the present study, rASCs were selected as the cell source for bone tissue engineering based upon the use of autologous ASCs for minimizing immunological rejection and the fact that greater cell numbers can be harvested from the patient with less pain. Collagen I was used to enhance the efficiency of cell adhesion. For the β-TCP scaffold the authors used a pore size of 460.90±78.75 μm and interconnection pore size of 157.66±37.94 μm. These were found to be biocompatible, osteoconductive, and able to be degraded, which facilitate vascularization and rapid bone growth progression. The in vivo experimental results demonstrated that the novel biomimetic tissue engineered bone graft could promote osteogenesis in critically sized defects. Twelve weeks after implantation, the defects were almost completely repaired by the presence of the and medullary cavity. The results also suggested that the degeneration of the scaffolds may be accelerated by the interaction of rASCs, collagen I and the biomaterials.

"We hope to garner new insight into the engineering of rASCs-based for clinical application". said Dr. Kunzheng Wang, senior author and Distinguished University Professor, Vice Chairmen of the Chinese Orthopaedic Association (COA).

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This exciting study by Professor Wang and his colleagues has provided a novel stem cell based and tissue engineered construct which can repair damaged . In the future these findings could be translated into the clinical setting".

Explore further: Repairing articular cartilage defects with an injectable gel engineered with gene modified BMSCs

Related Stories

Repairing articular cartilage defects with an injectable gel engineered with gene modified BMSCs

April 23, 2013
Researchers at Micro Orthopaedics, Zhongnan Hospital of Wuhan University, led by Dr. Ai-xi Yu, have suggested that articular cartilage defects can be repaired by a novel thermo-sensitive injectable hydrogel engineered with ...

Novel technique for suturing tissue-engineered collagen graft improves tendon repair

October 30, 2013
The repair of ruptured tendons often requires the use of a graft to bridge gaps between the torn tendon and bone. A tissue-engineered collagen graft can reduce the complications associated with other types of tendon grafts, ...

Identification of a molecule linking bone loss and bone formation

August 1, 2013
Bone integrity requires skeletal remodeling, which involves both bone formation and resorption. It has been previously shown that the formation of new bone is triggered by degradation of older bone. However, it is unknown ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.