Researchers develop new hearing test technology

December 4, 2013 by Cynthia Mckelvey

Much of what is known about sensory touch and hearing cells is based on indirect observation. Scientists know that these exceptionally tiny cells are sensitive to changes in force and pressure. But to truly understand how they function, scientists must be able to manipulate them directly. Now, Stanford scientists are developing a set of tools that are small enough to stimulate an individual nerve or group of nerves, but also fast and flexible enough to mimic a realistic range of forces.

A team of mechanical engineers from Stanford and ear specialists from the Stanford School of Medicine is developing a new device, known as a force probe, that allows the researchers to study the flexible hair cells that translate sound waves into electrical signals. The probe works at a range of frequencies that are more realistic to human hearing than previous machines.

Our ability to interpret sound is largely dependent on bundles of thousands of tiny hair cells that get their name from the hair-like projections on their top surfaces. As sound waves vibrate the bundles, they force proteins in the cells' surfaces to open and allow electrically charged molecules, called ions, to flow into the cells. The ions stimulate each , allowing it to transfer information from the sound wave to the brain. Hair bundles are more sensitive to particular frequencies of sound, which allows us to tell the difference between a siren and a subwoofer.

People with damaged or congenital defects in these delicate hair cells suffer from severe, irreversible hearing loss. Scientists remain unsure how to treat this form of hearing loss because they do not know how to repair or replace a damaged hair cell. Physical manipulation of the cells is key to exploring the fine details of how they function. This new probe is the first tool nimble enough to do it.

Beth Pruitt, an associate professor of mechanical engineering, and researchers in her Stanford Microsystems Lab have been working to develop electromechanical devices for use as high-speed force probes. The tool, developed with funding from Stanford's Bio-X program, vibrates the hair cells to mimic the effect of incoming sound waves. This allows the researchers to study the cause-and-effect relationships between the forces exerted in hair cells by and the electrical signals they produce in response.

The new force probe represents several advantages over traditional glass force probes. At 300 nanometers thick, Pruitt's probe is just three-thousandths the width of a human hair. Made of flexible silicon, the probe can mimic a much wider range of sound wave frequencies than rigid glass probes, making it more practical for studying hearing. The probe also measures the force it exerts on hair cells as it pushes, a new achievement for high-speed force probes at such small sizes.

Manipulating the probe requires a gentle touch, said Pruitt's collaborator, Anthony Ricci, a professor of otolaryngology at the Stanford School of Medicine. The tissue samples – in this case, hair cells from a rat's ear – sit under a microscope on a stage floating on a cushion of air that keeps it isolated from vibrations.

The probe is controlled using three dials that function similarly to an Etch-a-Sketch. The first step of the experiment involves connecting a tiny, delicate glass electrode to the body of a single hair cell.

Using a similar manipulator, Ricci and his team then press the force probe on a single hair cell, and the glass electrode records the changes in the cell's electrical output. Pruitt and Ricci say that understanding how physical changes prompt electrical responses in hair cells can lead to a better understanding of how people lose their hearing following damage to the hair cells.

The force probe has the potential to catalyze future research on sensory science, Ricci said.

Up to now, limits in technology have held scientists back from understanding important functions such as hearing, touch, and balance. Like hair cells in the ear, cells involved in touch and balance react to the flexing and stretching of their cell membranes. The force probe can be used to study those cells in the same manner that Pruitt and Ricci are using it to study hair cells.

Understanding the mechanics of how cells register these sensory inputs could lead to innovative new treatments and prosthetics. For example, Pruitt and Ricci think their research could help bioengineers build a better hair cell for people with impaired hearing from damage to their natural hair cells.

Their efforts to build the probe are funded by Stanford's Bio-X Interdisciplinary Initiatives Program (Bio-X IIP), which provides money for interdisciplinary projects that have potential to improve human health in innovative ways. Bio-X seed grants have funded 141 research collaborations connecting hundreds of faculty since 2000. The proof-of-concept projects have produced hundreds of science publications, dozens of patents, and more than a tenfold return on research funds to Stanford.

"This project came about because collaborations are so open and available at Stanford. I'm not an engineer, so I couldn't design this myself. Beth is not a biologist, so she wouldn't have the applications for it," Ricci said. "But together we can take both of our strengths and put it together, and Stanford is an unusual place because it actually fosters that interaction."

Explore further: Listen to this: Study upends understanding of how humans perceive sound

More information: biox.stanford.edu/index.html

Related Stories

Listen to this: Study upends understanding of how humans perceive sound

November 20, 2013
A key piece of the scientific model used for the past 30 years to help explain how humans perceive sound is wrong, according to a new study by researchers at the Stanford University School of Medicine.

Sound preconditioning prevents ototoxic drug-induced hearing loss in mice

October 15, 2013
The death of sensory hair cells in the ear results in irreversible hearing loss. Several classes of drugs, including aminoglycoside antibiotics and chemotherapy drugs are known to kill hair cells; however, in many cases the ...

Identifying a mystery channel crucial for hearing

October 24, 2013
Our ability to hear relies on hair cells, sensory receptors that mechanically amplify low-level sound that enters the inner ear through a transduction channel. Although the transduction channel was characterized more than ...

Researchers gain insight into protective mechanisms for hearing loss

September 17, 2013
Researchers from the Eaton-Peabody Laboratories of the Massachusetts Eye and Ear and Harvard Medical School have created a new mouse model in which by expressing a gene in the inner ear hair cells—the sensory cells that ...

Sensory hair cells regenerated, hearing restored in mammal ear

January 9, 2013
Hearing loss is a significant public health problem affecting close to 50 million people in the United States alone. Sensorineural hearing loss is the most common form and is caused by the loss of sensory hair cells in the ...

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.