Trick that aids viral infection is identified

January 30, 2014

Scientists have identified a way some viruses protect themselves from the immune system's efforts to stop infections, a finding that may make new approaches to treating viral infections possible.

Viruses have well-known strategies for slipping past the immune system. These include faking or stealing a molecular identification badge that prevents a cell from recognizing a virus.

Scientists at Washington University School of Medicine in St. Louis and elsewhere have found some viruses have another trick. They can block the protein that checks for the identification badge.

The blocking structure is called a stem-loop, found at the beginning of the virus's . This is the first time scientists have found an immune-fighting mechanism built directly into the genetic material of a virus. They are looking for ways to disable it and searching for similar mechanisms that may be built into the genetic material of other disease-causing microorganisms.

"When the stem-loop is in place and stable, it blocks a host cell immune protein that otherwise would bind to the virus and stop the infectious process," said senior author Michael Diamond, MD, PhD, professor of medicine. "We found that changing a single letter of the virus's genetic code can disable the stem-loop's protective effects and allow the virus to be recognized by the host immune protein. We hope to find ways to weaken the stem-loop structure with drugs or other treatments, restoring the natural virus-fighting capabilities of the cell and stopping or slowing some ."

Most life forms encode their genes in DNA. To use the instructions contained in DNA, though, cells have to translate them into a related genetic material, RNA, that can be read by a cell's protein-making machinery.

Some viruses encode their genes directly in RNA. Examples include West Nile virus and influenza virus, and the viruses that cause sudden acute respiratory syndrome (SARS), yellow fever and polio.

When a virus infects a cell, it co-opts the cell's protein-making machinery to make viral proteins. These proteins allow the virus to replicate. Copies of the break into other cells, repeat the process, and the infection spreads.

The researchers studied alphaviruses, a group of RNA viruses that cause fever, encephalitis and infectious arthritis. They showed that a single-letter change in the RNA of an alphavirus strengthened the stem-loop. When the structure was stable, a key called Ifit1 was blocked from binding to the viral RNA and the infection continued unchecked. But when the stem-loop was unstable, Ifit1 would bind to the viral RNA and disable it, stopping the infectious process.

"Knowing about this built-in viral defense mechanism gives us a new opportunity to improve treatment of infection," Diamond said. "To control emergent infections, we must continue to look for ways that have antagonized our natural defense mechanisms and discover how to disable them."

Explore further: Study identifies protein essential for immune recognition, response to viral infection

More information: Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, Huang C, Tonelli M, Paessler S, Takeda K, Klimstra WB, Amarasinghe GK, Diamond MS. A viral RNA structural element alters host recognition of non-self RNA. Science Express, Jan. 31, 2014.

Related Stories

Study identifies protein essential for immune recognition, response to viral infection

November 24, 2013
A Massachusetts General Hospital (MGH)-led research team has identified an immune cell protein that is critical to setting off the body's initial response against viral infection. The report that will be published in an upcoming ...

Researchers find new rhinovirus infection insights

December 31, 2013
(Medical Xpress)—On average, each of us catches a cold two to three times a year. However, how the common cold virus actually infects us is only partly understood. Researchers from the Max F. Perutz Laboratories of the ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Some brain cells are better virus fighters

March 7, 2013
(Medical Xpress)—Viruses often spread through the brain in patchwork patterns, infecting some cells but missing others. New research at Washington University School of Medicine in St. Louis helps explain why. The scientists ...

PDL-1 antibody could help immune system fight off influenza viral infection, study suggests

December 23, 2013
An antibody that blocks a component of a key signaling pathway in the respiratory airways could help the immune system rid the body of the influenza virus, a new study suggests. The findings, from a team at The Research Institute ...

New findings reveal protein structure in rubella virus

December 10, 2013
(Medical Xpress)—Researchers have determined the structure of the rubella virus capsid protein, which is central to the virus's ability to assemble into an infectious particle and to infect humans.

Recommended for you

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

Researchers find way to convert bad body fat into good fat

September 19, 2017
There's good fat and bad fat in our bodies. The good fat helps burn calories, while the bad fat hoards calories, contributing to weight gain and obesity. Now, new research at Washington University School of Medicine in St. ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.