Computer supports interpretation of EEGs

January 28, 2014

An estimated forty to fifty thousand EEG registrations are made each year in the Netherlands alone. Visually analysing and interpreting all this data costs neurologists and clinical neurophysiologists a great deal of time and expertise, and PhD candidate Shaun Lodder of the University of Twente examined whether a computer could replace them in performing these tasks. Lodder's conclusion: "Although a computer cannot completely replace neurologists, it is certainly very helpful in assisting them." Lodder is affiliated with the MIRA research institute and will defend his PhD thesis on 31 January.

A large part of Lodder's PhD thesis focuses on analysing EEG data obtained from patients suspected of having epilepsy. Together with prof. dr. ir. Michel van Putten and his team, the PhD candidate has developed a user-friendly computer application which can detect epileptiform abnormalities and reveal these to the evaluator which then does not have to visually screen the entire EEG. Lodder: "This is the first time that, in addition to finding new algorithms for diagnosing epilepsy, a practical solution has been found which is suitable for clinical use. What is so unique about this method is that the computer software improves itself based on feedback received from the neurologist. Unfortunately, however, the program does not yet match up to the experience and intuition of neurologists. EEG patterns are often so complex that sometimes even doctors do not agree on specific findings."

Neurologists use an EEG to measure a patient's brain activity. When diagnosing or classifying epilepsy in a patient, a neurologist is looking for certain abnormalities in the wave patterns of the EEG. These can be seen, for instance, in the form of a short high-amplitude peak, followed by a slow wave; this is highly indicative of epilepsy. During an outpatient procedure, a patient receives an EEG lasting 20-30 minutes. Evaluating this EEG demands a great deal of time, expertise and intuition from a .

Lodder developed a user-friendly application that has been tested and evaluated by nine neurologists and clinical neurophysiologists in the Netherlands. The main advantage of the system is that it can save a lot of time. A computer program is capable of analysing the recording within five minutes. Patients are currently screened during only 20 to 30 minutes each time, but in the future this will be possible over a much longer period (by using home registrations, for example), thus improving the diagnoses of doctors. This application serves primarily as a tool for neurologists. Lodder: "With the help of a database of more than two thousand examples of patterns obtained from test EEGs, we are able to classify wave patterns in other EEGs on the basis of similarity. The system presents abnormalities in a decreasing order of probability. The reviewer can then subsequently reject or confirm them. The software is capable of using the feedback obtained from reviewing to improve itself."

Lodder wants to carry out further research via a yet to be created spin-off company in South Africa, his country of birth, in order to improve the accuracy of the interpretation and to develop the system even further with additional EEG properties for the assessment of the EEG registrations. Lodder: "For now this application should just be seen as a tool for neurologists. There is a chance that in the future this software will be capable of fully recognizing certain patterns."

Explore further: Electroencephalography underused investigative tool in hospitals

Related Stories

Electroencephalography underused investigative tool in hospitals

April 1, 2013
A retrospective study of patients who had in-hospital electroencephalography (EEG) has established that EEG is a valuable tool that could be deployed more widely to identify treatable causes of impaired consciousness in the ...

Hearing brainwaves: Epilepsy EEG sonified

July 16, 2013
A simple method of converting the brain wave signals of people living with epilepsy into sound has been developed by a team of researchers at the University of Sydney.

Getting to grips with seizure prediction

November 7, 2013
A device that could predict when a person with epilepsy might next have a seizure is one step closer to reality thanks to the development of software by researchers in the USA. Details are to be published in a forthcoming ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.