Flies, humans perceive motion in same way, study finds

January 24, 2014 by Becky Bach, Stanford University
Close-up of the head of Calliphora vomitoria. Credit: Wikipedia.

(Medical Xpress)—Anyone who has tried to swat a fly knows they can quickly spot – and evade – the approaching swatter. New research from a team of Stanford scientists might explain why: Flies and humans share a computational strategy to perceive motion.

"What's really exciting to me is that no one would have expected this deep similarity between two animals that are so evolutionarily different," said Stanford's Thomas Clandinin, an associate professor of neurobiology and one of the authors of the study, which was published this month in the journal Nature Neuroscience.

The last common ancestor of flies and humans lived more than 500 million years ago when the planet looked quite different. Nonetheless, repeated patterns in the natural environment led ancestors of both organisms to evolve similar strategies to sense movement.

It is likely this model evolved twice – once in a ancestor and once for a fly ancestor – because flies and humans are so far apart on the evolutionary tree, according to neurobiologist Damon Clark, a lead author of the paper. Despite the fact that the brains of humans and flies are quite different, they analyze in similar ways. Clark, now a professor at Yale, was a Stanford postdoctoral researcher in Clandinin's group at Stanford when he worked on the project.

Scientists know quite a bit about how the eye detects light. However, they don't completely understand how the brain translates a series of chemical signals into an image. The research team examined motion perception in flies and humans to learn more about the visual system and the brain's problem-solving strategies.

"The big question is really 'How does the brain evolve,'" said Anthony Norcia, an author of the paper and a Stanford professor (research) of psychology.

The study suggests there may be an optimal way to view natural moving objects which share fundamental properties, Clark said. By statistically modeling these properties, theoretical neuroscientist James Fitzgerald, also a lead author of the paper, was able to develop a framework to test these theories, team members said. Fitzgerald was previously a graduate student at Stanford and is now a postdoctoral fellow at Harvard University.

Both humans and flies discern three types of information about a moving object: its speed, direction of motion and brightness. Previous models were flawed because they discarded information about brightness, Norcia said.

The team tested its theories in both humans and flies. In Norcia's lab, volunteers watched videos while researchers monitored their scalp electroencephalogram (EEG) signals. They also answered questions about their perception of motion based on the videos.

But to test flies, researchers couldn't just ask them which way an image was moving. Instead, Clark said, they capitalized on a known fly trait: Flies turn in the direction of motion. Clark tethered flies to sticks, posed them on tiny spherical treadmills, and then screened videos while monitoring their movements.

The project was possible thanks to the kind of interdisciplinary teamwork that is common at Stanford, Norcia said. It started when Clark gave an informal presentation in the Department of Psychology, piquing the interest of Norcia and the study's third lead author, former Stanford postdoctoral researcher Justin Ales, who is now a lecturer at the University of St. Andrews in Scotland.

Fitzgerald said he chose to study motion in flies because it could be possible to pinpoint the neural networks involved. "The ultimate hope is by finding an example of how solve this particular problem, it could give us some insight into how the brain solves problems more generally," Fitzgerald said.

Explore further: An optical illusion called 'reverse-phi motion' helps explain how we view moving objects

More information: "Flies and humans share a motion estimation strategy that exploits natural scene statistics." Damon A Clark, James E Fitzgerald, Justin M Ales, Daryl M Gohl, Marion A Silies, Anthony M Norcia, Thomas R Clandinin. Nature Neuroscience (2014) DOI: 10.1038/nn.3600. Received 12 August 2013 Accepted 14 November 2013 Published online 05 January 2014

Related Stories

An optical illusion called 'reverse-phi motion' helps explain how we view moving objects

September 12, 2011
(PhysOrg.com) -- Flies like watching computer screens as much as the next animal. Set them on a trackball in front of a monitor, and they'll follow the action – if the images in front of them move in one direction, the ...

Tracking down motion perception

June 22, 2011
Neurobiologists have determined the number of circuits needed to see movements.

Study unlocks secret of how fruit flies choose fruit with just the right amount of ethanol

December 10, 2013
(Phys.org) —Researchers from the University of California working with a team at Howard Hughes Medical Institute in Virginia, have discovered how it is that fruit flies are able to lay their eggs in rotting fruit that has ...

Neurobiologists discover elementary motion detectors in the fruit fly

August 7, 2013
Recognising movement and its direction is one of the first and most important processing steps in any visual system. By this way, nearby predators or prey can be detected and even one's own movements are controlled. More ...

From bacteria to lions – how tiny proteins which control our responses to both could be linked

July 29, 2013
New research from the University of Birmingham and the University of Cambridge has uncovered a relationship between proteins that control immunity and proteins that control activity in the brain.

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.