Focusing in on high-resolution network biology

January 22, 2014

A central challenge in genetics is to understand how changes in DNA result in observable changes in an organism; how genotype maps to phenotype. As genes and their protein products do not act in isolation, connecting genotype with phenotype requires thinking of genes in their network context.

Traditionally, network biology has treated and proteins as simple nodes in a network, ignoring their structural properties. This type of 'coarse-grained' approach gives a high-level overview of what genes and proteins do and who they do it with.

However, scientists need to focus in greater detail to find out the particular parts of multi-functional proteins responsible for specific interactions, or to identify the functions that will be impacted by a specific mutation.

Conway postdoctoral research fellow, Dr Colm J. Ryan from UCD School of Medicine & Medical Science along with colleagues in the University of California, San Francisco reviewed the 'fine-grained' techniques that seek to address this gap in a recently published article in Nature Reviews Genetics.

Dr Ryan, first author on the publication, said, "The work set out to review computational and experimental advances that allow us to identify both the parts of proteins responsible for mediating specific interactions and the functional consequences of specific mutations. These functional consequences include altered sensitivities to different drugs, and increased dependencies on the functions of other genes."

Ultimately, methods such as those discussed in the review may lead to the development of improved targeted therapeutics. For example, it has been observed in cancer that different mutations of the same oncogene can result in different clinical outcomes, including differential sensitivities to therapeutics. Such phenomena are poorly understood, and drug-gene and gene-gene interaction screens of the type discussed in the paper will be necessary to address this gap in our knowledge.

Explore further: Study finds gene network associated with alcohol dependence

More information: High-resolution network biology: connecting sequence with function. Colm J. Ryan, Peter Cimermančič, Zachary A. Szpiech, Andrej Sali, Ryan D. Hernandez & Nevan J. Krogan. Nature Reviews Genetics 14, 865–879 (2013) DOI: 10.1038/nrg3574

Related Stories

Study finds gene network associated with alcohol dependence

November 21, 2013
There is good evidence from studies of families and twins that genetics plays an important role in the development of alcoholism. However, hundreds of genes likely are involved in this complex disorder, with each variant ...

Genetic basis for memory formation has implications for neurological diseases

December 20, 2013
(Medical Xpress)—Scientists from Trinity College Dublin have shown for the first time that two genes involved in many neurological diseases act together to regulate specific aspects of protein production in nerve cells ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.