Genetic basis for memory formation has implications for neurological diseases

December 20, 2013

(Medical Xpress)—Scientists from Trinity College Dublin have shown for the first time that two genes involved in many neurological diseases act together to regulate specific aspects of protein production in nerve cells and allow the development of a simple form of memory called habituation. These findings have implications for our understanding of memory formation in general, and will also aid ongoing research in related diseases. 

Habituation occurs when we are repeatedly exposed to a stimulus and our response is lessened over time as a result. Two everyday examples include our ability to stop hearing ambient noise when concentrating on a particular task, and the fact that we stop feeling the clothes we are wearing once we are dressed. 

The scientists behind the discovery worked with fruit flies to explore the fundamentals of memory and learning and to investigate the molecular function of the two genes, called 'Atx2' and 'FMRP'. Atx2 is associated with Motor Neurone Disease and Spinocerebellar Ataxia type 2, while FMRP is known to impact mental retardation and Autism Spectrum Disorder.  

Fruit flies of the species Drosophila melanogaster have been used by many geneticists over the last century as 'model organisms' that allow them to explore the way genes work. Genetic mutations that prevent appropriate protein production and suppression in specific are often linked with , with a common element among these diseases being the inability of an affected individual to adapt to a new or changing environment. 

The scientists, led by Professor of Neurogenetics at Trinity, Mani Ramaswami, recently published their results in the prominent international journal PNAS. They showed that flies that normally learned to ignore a familiar, unpleasant smell, failed to do so if they had defects in either gene. They proposed two potential explanations for defective protein regulation based on their results. Mutations that cause a loss of function in both genes lead to a failure to reduce protein production when associated proteins are not required, while an increased or altered function of the genes leads to a 'hyper-repressed' state in which the stimulation of specific is prevented when these proteins are required.

Professor Ramaswami said: "This work may provide a partial explanation not only for defects in memory consolidation that is associated with early-stage neurodegenerative disease, but also for defects in adaptive ability seen in autism spectrum disorders." 

Dr Jens Hillebrand, Research Fellow in Genetics at Trinity and co-lead author on the paper, added: "It is nice to be able to potentially explain why FMRP and Atx2 diseases in humans are symptomatically different, even though the two proteins have rather similar normal functions." 

Explore further: Scientists propose a molecular explanation for degenerative disease

More information: Indulekha P. Sudhakaran, Jens Hillebrand, Adrian Dervan, Sudeshna Das, Eimear E. Holohan, Jörn Hülsmeier, Mihail Sarov, Roy Parker, K. VijayRaghavan, and Mani Ramaswami. "FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control." PNAS 2013 ; published ahead of print December 16, 2013, DOI: 10.1073/pnas.1309543111

Related Stories

Scientists propose a molecular explanation for degenerative disease

August 16, 2013
An international collaboration jointly led by scientists from Trinity College Dublin has shed new light on the origins and molecular causes of age related degenerative conditions including Motor Neurone Disease (MND). The ...

New research increases understanding of learning, memory

August 26, 2011
(Medical Xpress) -- New international research on how fruit flies learn to ignore a constant smell, which increases understanding of behavioural habituation, has been recently published in the leading international journal ...

Fragile X protein linked to nearly 100 genes involved in autism

December 12, 2012
Doctors have known for many years that patients with fragile X syndrome, the most common form of inherited intellectual disability, are often also diagnosed with autism. But little has been known about how the two diagnoses ...

Researchers target an aspect of Down syndrome

June 5, 2013
University of Michigan researchers have determined how a gene that is known to be defective in Down syndrome is regulated and how its dysregulation may lead to neurological defects, providing insights into potential therapeutic ...

Genetic mutation found to restore translational balance in mice

October 20, 2013
In a biological quirk that promises to provide researchers with a new approach for studying and potentially treating Fragile X syndrome, scientists at the University of Massachusetts Medical School (UMMS) have shown that ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.