New prostate cancer drugs may not be targeting root cause of disease, scientists warn

January 27, 2014, University of York
New prostate cancer drugs may not be targeting root cause of disease, York scientists warn
Differentiated prostate cancer cells.

(Medical Xpress)—New drugs being developed for the treatment of prostate cancer may not be targeting the root cause of the disease, according to research published today (Friday, 24 January 2014) in Cell Death & Differentiation.

Scientists at the University of York have discovered that a process called 'methylation', previously thought to drive the development of cancer, occurs in cells that are already cancerous. The findings mean therapies aimed at reversing this process might not be effective against cancer , allowing the cancer to return.

The work, carried out by Dr Davide Pellacani, a member of Professor Norman Maitland's team at the YCR Cancer Research Unit at the University's Department of Biology, and funded by Yorkshire Cancer Research and the Grand Masonic Charity, reveals a major difference between the cells normally treated in cancer and the underlying 'stem' cells.

Dr Pellacani said: "To develop cancer, certain proteins found in healthy cells need to be switched off. Sometimes this is caused by methylation - a process where DNA is changed to block instructions for making a specific protein.

"There are obvious differences in the methylation of genes in and non-cancer cells. This previously suggested that the process could be driving the progression of cancer, and that this could be reversed by using specific drugs, but our research has suggested that this may not be the case."

Prostate cancer is made up of two types of cell; rare basal cells, including stem cells, from which the tumour is formed, and luminal cells, which form the tumour mass.

The team found that a change from basal to luminal cells – a process called differentiation – is strongly linked to the methylation difference, suggesting that the methylation in prostate cancer cells is not the primary driving force for the cancer.

Dr Pellacani continued: "There are clear implications for the effectiveness of new drugs currently being developed to change the methylation pattern in cancers. At the moment we only treat a proportion of the cells. By breaking the cancer down into its component cell types, we get insights into why cancers come back after treatment. Only by treating all the cells in a cancer will we approach long term or even cure."

Professor Maitland and his team at the YCR Cancer Research Unit achieved international recognition in 2005 when they were the first to identify prostate stem cells, which are believed to be the 'root cause' of . The team, now supported by a £2.15m award from Yorkshire Cancer Research, has since explored the exact molecular properties that allow these cells to spread, survive and resist aggressive treatments such as radiation and chemotherapy.

Explore further: Combination therapy could lead to reduction in prostate cancer recurrence

Related Stories

Combination therapy could lead to reduction in prostate cancer recurrence

November 14, 2013
Prostate cancer patients who receive radiotherapy could soon be treated more effectively, according to research published today in the British Journal of Cancer.

York scientists discover driving force behind prostate cancer

March 27, 2013
Scientists at the University of York have discovered the driving force behind the development of prostate cancer.

How prostate cancer cells evolve

December 4, 2013
(Medical Xpress)—UCLA researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies. 

Vitamin A could prevent the spread of prostate cancer

April 16, 2013
(Medical Xpress)—Vitamin A could help treat and prevent the spread of prostate cancer, according to research published today (Monday, April 15th) in Oncogenesis.

Breast cancer prognosis associated with oncometabolite accumulation

December 9, 2013
The metabolic profile of cancer cells can be used to develop therapies and identify biomarkers associated with cancer outcome. In this issue of the Journal of Clinical Investigation Stefan Ambs and colleagues at the National ...

Researchers find cancer aggression differences in different types of prostate cells

February 25, 2013
(Medical Xpress)—A research team made up of representatives from several cancer research centers in the United States has found that cancers that develop in the prostate of mice may be either aggressive or sluggish depending ...

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.