Dormant prostate cancer cells may be reawakened by factors produced in inflammatory cells

January 29, 2014

Researchers in the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute discovered in pre-clinical models that dormant prostate cancer cells found in bone tissue can be reawakened, causing metastasis to other parts of the body. Understanding this mechanism of action may allow researchers to intervene prior to disease progression.

"Understanding how and why dormant cells in bone tissue metastasize will aid us in preventing the spread of disease, prolonging survival and improving overall quality of life," said Chia-Yi "Gina" Chu, PhD, a researcher and postdoctoral fellow in the Uro-Oncology Research Program and lead author of the study published in the journal Endocrine-Related Cancer.

In the study, investigators found that cancerous cells in the bone were reawakened after exposure to RANKL, a signaling molecule commonly produced by inflammatory cells. Researchers then genetically engineered cells to overproduce RANKL and found that these cells could significantly alter the gene expression of surrounding dormant cells in lab studies and in laboratory mice, causing them to transform into aggressive cancer cells.

Researchers then injected these engineered RANKL cells directly into the blood circulation of laboratory mice, which caused dormant cells within the skeleton to reawaken, creating tumors within the bone. When the RANKL receptor or its downstream targets were blocked, tumors did not form.

"After examination, these engineered tumors were found to contain both RANKL-producing prostate cancer cells and dormant cells, which had been transformed to become cancerous," said Chu. "However, the transformed cells displayed aggressive traits that would metastasize to bone and become resistant to standard hormone therapies used to treat the disease."

Though findings are preliminary, researchers plan to identify other cells known to produce RANKL that may also recruit and reprogram dormant cells to colonize bone tissue. Investigators plan to embark into clinical research with human patients in collaboration with leading Cedars-Sinai researchers, including Edwin Posadas, MD, medical director of the Urologic Oncology Program.

"Though more work must be done to understand how RANKL reprograms dormant cells to become cancerous, we look forward to examining its influence on promoting metastasis and secondary tumors, as well as the possibility of 'deprogramming' metastatic cancer cells," said Leland Chung, PhD, director of the Uro-Oncology Research Program.

Explore further: New prostate cancer drugs may not be targeting root cause of disease, scientists warn

More information: Endocrine-Related Cancer. 2014 January: RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization.

Related Stories

New prostate cancer drugs may not be targeting root cause of disease, scientists warn

January 27, 2014
(Medical Xpress)—New drugs being developed for the treatment of prostate cancer may not be targeting the root cause of the disease, according to research published today (Friday, 24 January 2014) in Cell Death & Differentiation.

BPA increases risk of cancer in human prostate tissue

January 7, 2014
Fetal exposure to a commonly used plasticizer found in products such as water bottles, soup can liners and paper receipts, can increase the risk for prostate cancer later in life, according to a study from the University ...

Denosumab delays development of prostate cancer bone metastasis

November 16, 2011
An international clinical trial has found that treatment with a drug that suppresses the normal breakdown of bone can delay the development of bone metastases in men with prostate cancer. The study, receiving Online First ...

Scientists develop powerful new animal model for metastatic prostate cancer

January 24, 2014
Prostate cancer is the most common form of cancer in men. Affecting about 1 in 6 men, it is the second deadliest cancer. Research has been stymied by imperfect animal models of the disease, which are costly, take considerable ...

Scientists finally discover which prostate cancers are life-threatening

November 19, 2013
Cancer Research UK scientists have discovered that the presence of a specific protein can distinguish between prostate cancers that are aggressive and need further treatment from those that may never seriously harm the patient.

New method to study secondary breast cancer metastasis

December 10, 2013
Research led by scientists at King's College London has discovered a new way to study the mechanisms that cause breast cancer cells to spread to the bone.

Recommended for you

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.