Viral microRNAs responsible for causing AIDS-related cancer

January 13, 2014, University of Southern California

For the first time, scientists and engineers have identified a critical cancer-causing component in the virus that causes Kaposi's sarcoma, the most common cancer among HIV-infected people. The discovery lays the foundation for developing drugs that prevent Kaposi's sarcoma and other related cancers.

"The mechanism behind the Kaposi's -associated herpesvirus (KSHV) that causes to become malignant is not well understood despite two decades of intensive studies," said S. J. Gao, Ph.D., professor of molecular microbiology and immunology at the Keck School of Medicine of the University of Southern California (USC) and principal investigator of the study. "This is the first time that a viral factor has been shown to be required for KSHV-induced malignant transformation. We have identified a mechanism by which these tiny viral molecules cause the cells to become malignant."

Distinguished by dark lesions on the skin, Kaposi's sarcoma most commonly develops in people who are infected with KSHV and also have compromised immune systems. Although many people infected with KSHV never show any symptoms, Kaposi's sarcoma is a persistent problem in areas where HIV infection is high and access to HIV therapy is limited. More than 90 percent of the population in some areas of Africa shows signs of KSHV infection, according to the American Cancer Society.

Gao and colleagues from the University of Texas at San Antonio (UTSA) and University of Texas Health Science Center at San Antonio studied KSHV using a rat stem cell model they developed in 2012. Until then, researchers had been unable to study the virus because most healthy cells, once infected with KSHV, died before turning into .

In this study, which appears in the Dec. 26 edition of the peer-reviewed journal PLOS Pathogens, the team identifies a cluster of viral microRNA molecules that are necessary to transform healthy cells into cancerous ones. When this microRNA cluster was suppressed, the cells died after they were infected with KSHV. Flipping the switch and turning the cluster back "on," however, allowed the cells to stay alive and become malignant when infected with the virus.

Using advanced genomic methods, the researchers also found that the microRNAs target the IκBα protein and the NF-κB cellular pathway, both of which are associated with development.

"Our results suggest that this cluster of KSHV microRNAs and their regulated NF-κB pathway may be potential targets for new therapeutics of KSHV-related cancers," said Gao, who is also a member of the USC Norris Comprehensive Cancer Center. "Several of the microRNAs appear to have redundant functions, so targeting their common pathways might be a more feasible approach. It would be interesting to test them in the KSHV-induced Kaposi's sarcoma model."

Explore further: Study identifies trigger for alternate reproduction of HIV-related cancer virus

Related Stories

Study identifies trigger for alternate reproduction of HIV-related cancer virus

April 17, 2012
A research team led by Children's National Medical Center has identified a trigger that causes latent Kaposi's sarcoma-associated herpesvirus (KSHV) to rapidly replicate itself. KSHV causes Kaposi's sarcoma, primary effusion ...

KS-herpesvirus induces reprogramming of lymphatic endothelial cells to invasive mesenchymal cells

December 14, 2011
Kaposi's sarcoma herpesvirus (KSHV) is an etiological agent for Kaposi's sarcoma and two other rare lymphoproliferative malignancies, and it is the most common cancer in HIV-infected untreated individuals. Researchers at ...

Searching for therapeutic synergy in primary effusion lymphoma

May 1, 2013
Primary effusion lymphoma (PEL) is a rare, fatal form of aggressive B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). The disease most commonly occurs in immunocompromised patients, such as those with ...

Viral replication impedes the efficacy of a targeted therapy against virus-induced lymphomas

April 3, 2012
Kaposi's sarcoma herpesvirus (KSHV) is a human tumor virus and an etiological agent for Kaposi's sarcoma and primary effusion lymphoma (PEL). PELs are aggressive lymphomas with reported median survival time shorter than six ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.