Why does the brain remember dreams?

February 17, 2014
Temporo-parietal jonction (TPJ) Credit: © Perrine Ruby / Inserm

Some people recall a dream every morning, whereas others rarely recall one. A team led by Perrine Ruby, an Inserm Research Fellow at the Lyon Neuroscience Research Center, has studied the brain activity of these two types of dreamers in order to understand the differences between them. In a study published in the journal Neuropsychopharmacology, the researchers show that the temporo-parietal junction, an information-processing hub in the brain, is more active in high dream recallers. Increased activity in this brain region might facilitate attention orienting toward external stimuli and promote intrasleep wakefulness, thereby facilitating the encoding of dreams in memory.

The reason for dreaming is still a mystery for the researchers who study the difference between "high dream recallers," who recall dreams regularly, and "low dream recallers," who recall dreams rarely. In January 2013 (work published in the journal Cerebral Cortex), the team led by Perrine Ruby, Inserm researcher at the Lyon Neuroscience Research Center, made the following two observations: "high dream recallers" have twice as many time of wakefulness during sleep as "low dream recallers" and their brains are more reactive to auditory stimuli during sleep and wakefulness. This increased brain reactivity may promote awakenings during the night, and may thus facilitate memorisation of dreams during brief periods of wakefulness.

In this new study, the research team sought to identify which areas of the brain differentiate high and low dream recallers. They used Positron Emission Tomography (PET) to measure the spontaneous brain activity of 41 volunteers during wakefulness and sleep. The volunteers were classified into 2 groups: 21 "high dream recallers" who recalled dreams 5.2 mornings per week in average, and 20 "low dream recallers," who reported 2 dreams per month in average. High dream recallers, both while awake and while asleep, showed stronger spontaneous brain activity in the (mPFC) and in the temporo-parietal junction (TPJ), an area of the brain involved in attention orienting toward .

"This may explain why high dream recallers are more reactive to environmental stimuli, awaken more during sleep, and thus better encode dreams in memory than low dream recallers. Indeed the sleeping brain is not capable of memorising new information; it needs to awaken to be able to do that," explains Perrine Ruby, Inserm Research Fellow.

The South African neuropsychologist Mark Solms had observed in earlier studies that lesions in these two brain areas led to a cessation of dream recall. The originality of the French team's results is to show differences between high and low dream recallers during sleep and also during .

"Our results suggest that high and low dream recallers differ in dream memorization, but do not exclude that they also differ in dream production. Indeed, it is possible that high dream recallers produce a larger amount of dreaming than low recallers" concludes the research team.

(subtitles coming soon)

Explore further: Study shows differences in brain waves between people who recall dreams and those who don't

More information: Resting brain activity varies with dream recall frequency between subjects Neuropsychopharmacology, Online Advance Publication 19 February 2014 (Accepted article preview online) DOI: 10.1038/npp.2014.6

Related Stories

Study shows differences in brain waves between people who recall dreams and those who don't

August 15, 2013
(Medical Xpress)—Researchers at Lyon Neuroscience Research Center and University Lyon in France, have found that people who regularly recall their dreams have different alpha brain wave patterns than do people who rarely ...

Dreaming is still possible even when the mind is blank

September 11, 2013
Isabelle Arnulf and colleagues from the Sleep Disorders Unit at the Université Pierre et Marie Curie (UPMC) have outlined case studies of patients with Auto-Activation Deficit who reported dreams when awakened from REM sleep ...

The seat of meta-consciousness in the brain

July 27, 2012
Studies of lucid dreamers visualize which centers of the brain become active when we become aware of ourselves.

Brain imaging study: A step toward true 'dream reading'

October 27, 2011
When people dream that they are performing a particular action, a portion of the brain involved in the planning and execution of movement lights up with activity. The finding, made by scanning the brains of lucid dreamers ...

Dreams: Full of meaning or a reflex of the brain?

October 3, 2013
It's a question that has long fascinated and flummoxed those who study human behavior: From whence comes the impulse to dream? Are dreams generated from the brain's "top" - the high-flying cortical structures that allow us ...

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.