Researchers discover genetic mutations that cause rare and deadly lung disease

February 4, 2014, Intermountain Medical Center

A team of researchers, led by physicians and scientists at Intermountain Healthcare's Intermountain Medical Center and ARUP Laboratories, has made a medical breakthrough by discovering genetic mutations that cause a rare and deadly lung disease.

The disease, pulmonary capillary hemangiomatosis or PCH, is a rare cause of , which occurs predominantly in young adults. PCH affects less than one in a million people, and has been extremely difficult and expensive to diagnose, as well as challenging to treat.

This genetic discovery offers new hope.

"This is a significant finding. This discovery should advance our understanding of this rare pulmonary vascular disorder and other related disorders," said Greg Elliott, MD, MACP, senior investigator of the study and medical director of the Pulmonary Hypertension Center at Intermountain Medical Center in Murray, Utah, and professor of medicine at the University of Utah School of Medicine.

Results of the study will be published in the February issue of the journal Chest, the official publication of the American College of Chest Physicians.

Dr. Elliott and his team at Intermountain Medical Center and the University of Utah School of Medicine collaborated with researchers from Columbia University, Vanderbilt University and Mayo Clinic-Scottsdale.

To find the genetic mutation, the research team used a relatively new technology – whole exome sequencing – performed at ARUP Laboratories in Salt Lake City to test DNA samples. They discovered the genetic mutations in Eukaryotic Translation Initiation Factor 2 Alpha Kinase 4. EIF2AK4 is a protein responsible for down-regulating protein synthesis when cells are exposed to stress.

Researchers found that in patients with the , their bodies don't properly regulate blood vessels in the lung. As a result, the capillaries in the lungs proliferate and the patient develops pulmonary hypertension.

D. Hunter Best, PhD, and Kelli L. Sumner, BS, two scientists on the research team, conducted the exome sequencing and analyzed the data in collaboration with colleagues at Columbia University and Vanderbilt University.

"Whole exome sequencing is breakthrough technology that allows us to test accurately and cost effectively for rare genetic disorders," said Dr. Elliott. "Without Dr. Best's expertise and the work done by Kelly Sumner in the laboratory, this discovery would not have occurred."

For those who receive a diagnosis of PCH, it becomes a life-changing event, where risky, expensive treatments are used to slow the progression of the deadly disease.

It's also difficult to diagnose, often delaying proper treatment. Without a correct diagnosis, physicians may try ineffective and costly therapies because PCH's symptoms resemble many other lung diseases.

Dr. Elliott says the discovery of the genetic cause of PCH should allow the correct diagnosis to be made earlier.

"This disease is not easily treated," he added. "Most therapies are expensive and probably misapplied – or their value is limited. They also can pose significant risks to the patient. Accurate early diagnosis and treatment based upon a correct diagnosis should bring increased value to patients and their families."

With the finding, physicians can now choose to order a genetic test to help diagnose the disease. Previously, patients with findings that suggested PCH sometimes underwent a lung biopsy to seek an accurate diagnosis. In some cases this was either too risky to do, or the patient experienced complications following the biopsy.

"Now we can test for disease-causing mutations in EIF2AK4, and correctly diagnose PCH or related conditions," said Dr. Elliott. "A allows us to design the best treatment plan possible, save patients the added cost of ineffective therapies and unnecessary interventions – and most importantly, save lives."

Discovery of the gene mutations should also allow scientists to study the paths to disease development and to look for new ways to treat patients. Scientists can turn off (knock out) the gene in animal models to discover how the disease develops. Investigators also can explore targeted gene therapy or the effects of drugs that modify the function of the mutated gene.

"My hope is to ultimately find a treatment for this disorder and for the people affected with PCH and diseases like it. As their doctor, I see the suffering and I want to help," said Dr. Elliott.

Explore further: New study may lead to quicker diagnosis, improved treatment for fatal lung disease

Related Stories

New study may lead to quicker diagnosis, improved treatment for fatal lung disease

July 11, 2011
One-fifth of all patients with pulmonary arterial hypertension suffer with the fatal disease for more than two years before being correctly diagnosed and properly treated, according to a new national study led by researchers ...

Research breakthroughs advance understanding of genetic causes of vascular disease

January 6, 2014
(Medical Xpress)—The world's leading voices in the fight against pulmonary hypertension have compiled a special publication detailing the breakthrough research into the causes of this debilitating vascular disease.

Mutation in NFKB2 gene causes hard-to-diagnose immunodeficiency disorder CVID

October 17, 2013
A 30-year-old woman with a history of upper respiratory infections had no idea she carried an immunodeficiency disorder – until her 6-year-old son was diagnosed with the same illness.

Gene testing for heart diseases now available

November 15, 2013
Washington University School of Medicine in St. Louis now offers genetic testing to help diagnose and treat patients with heart disorders that can lead to sudden death.

New genetic cause of pulmonary hypertension identified

July 24, 2013
Columbia University Medical Center (CUMC) scientists have identified new genetic mutations that can cause pulmonary arterial hypertension (PAH), a rare fatal disease characterized by high blood pressure in the lungs. The ...

Mutation linked to congenital urinary tract defects

July 17, 2013
Researchers at Columbia University Medical Center (CUMC) and collaborators have identified a genetic mutation that causes congenital malformations of the kidney and urinary tract, a common form of birth defect and the most ...

Recommended for you

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...

Identical twins can share more than identical genes

January 9, 2018
An international group of researchers has discovered a new phenomenon that occurs in identical twins: independent of their identical genes, they share an additional level of molecular similarity that influences their biological ...

Hereditary facial features could be strongly influenced by a single gene variant, a new study finds

January 9, 2018
Do you have your grandmother's eyes? Or your father's nose? A new study by the Universities of Oxford and Surrey has uncovered variations in singular genes that have a large impact on human facial features, paving the way ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.