Mutation linked to congenital urinary tract defects

July 17, 2013, Columbia University Medical Center

Researchers at Columbia University Medical Center (CUMC) and collaborators have identified a genetic mutation that causes congenital malformations of the kidney and urinary tract, a common form of birth defect and the most common cause of kidney failure in children. It is the first time that a specific genetic mutation has been linked to a non-syndromic form of urinary tract malformation. The findings were published in the July 17 online issue of the New England Journal of Medicine.

The research team, led by Ali Gharavi, MD, associate professor of medicine in the Division of Nephrology and a nephrologist at NewYork-Presbyterian Hospital/Columbia University Medical Center, studied a Sardinian family with of the kidney and urinary tract. Several family members had experienced kidney failure at a young age. Using the recently developed tool of exome (sequencing of only the coding parts of the genome), the researchers identified a mutation in a gene called dual serine/threonine and tyrosine (DSTYK) in all of the affected family members.

The researchers then screened 311 unrelated individuals with urinary tract defects from centers throughout Europe and found seven other patients with DSTYK mutations. "These findings indicate that DSTYK mutations account for 2.2 percent of urinary tract defects in humans, which is very significant as a single-gene cause of this disease," says Dr. Simone Sanna-Cherchi, the first author of the study.

Some cases of congenital urinary tract defects present with kidney failure at birth, while others are not evident until complications arise, sometimes not until years later. By defining a new form of disease, these findings will allow clinicians to make a precise and identify mutation carriers who may be at risk for complications.

"Exome gene sequencing is now the method of choice for diagnosis of congenital disorders of unknown cause," says Dr. Gharavi. "It is what enabled us to detect the mutation that was shared by all affected individuals in the Sardinian family."

Drs. Sanna-Cherchi, Gharavi, and colleagues now plan to use the exome genome sequencing approach to study other patients and define additional forms of congenital urinary tract defects. "By defining new disease categories, we can study each genetic subtype in detail and determine why there is so much variability in the clinical course and complications of these disorders. We will be better able to advise patients on the risk of complications in family members and future offspring," says Dr. Sanna-Cherchi.

Explore further: Surprising genetic link between kidney defects and neurodevelopmental disorders in kids

Related Stories

Surprising genetic link between kidney defects and neurodevelopmental disorders in kids

November 15, 2012
About 10 percent of kids born with kidney defects have large alterations in their genomes known to be linked with neurodevelopmental delay and mental illness, a new study by Columbia University Medical Center (CUMC) researchers ...

Research finds spontaneous mutations are major cause of congenital heart disease

May 12, 2013
Every year, thousands of babies are born with severely malformed hearts, disorders known collectively as congenital heart disease. Many of these defects can be repaired though surgery, but researchers don't understand what ...

Could adaptable bacteria cause repeat urinary tract infections?

May 9, 2013
(HealthDay)—Women suffering from recurring urinary tract infections may carry a particularly hearty strain of E. coli bacteria that flourishes in both the gut and the bladder, and can migrate back and forth despite repeated ...

Whole genome or exome sequencing: An individual insight

June 27, 2013
Focusing on parts rather than the whole, when it comes to genome sequencing, might be extremely useful, finds research in BioMed Central's open access journal Genome Medicine. The research compares several sequencing technologies ...

A cautionary tale on genome-sequencing diagnostics for rare diseases

May 10, 2013
Children born with rare, inherited conditions known as Congenital Disorders of Glycosylation, or CDG, have mutations in one of the many enzymes the body uses to decorate its proteins and cells with sugars. Properly diagnosing ...

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.