How our immune system backfires and allows bacteria like Salmonella to grow

February 6, 2014

Our immune system wages an internal battle every day to protect us against a broad range of infections. However, researchers have found that our immune response can sometimes make us vulnerable to the very bacteria it is supposed to protect us from. A study published by Cell Press on February 6th in the journal Immunity reveals that the immune protein interleukin-22 (IL-22) actually enhances the growth of dangerous bacteria, like Salmonella, which causes food poisoning, and curbs the growth of healthy bacteria commonly found in the gut. The findings suggest that a supposedly protective immune response actually aids the growth of a gut pathogen by suppressing the growth of its closest competitors.

"Surprisingly, we found that interleukin-22 not only fell short in protecting the host against the spread of Salmonella, but it was also actually beneficial to these harmful bacteria," says senior study author Manuela Raffatellu of the University of California, Irvine. "Our findings have important implications for the development of treatment strategies against pathogens that can resist interleukin-22-induced responses."

To protect against disease-causing pathogens, IL-22 triggers the production of antimicrobial proteins that sequester metal ions such as iron, zinc, and manganese from microbes, starving them of these essential nutrients. But until now, it has been unclear how pathogens such as Salmonella escape IL-22's defenses.

To address this question, Raffatellu and her team first infected normal mice, and mice genetically engineered to lack IL-22, with Salmonella. Whereas Salmonella outcompeted the common gut bacterium Escherichia coli (E. coli) in normal mice, the reverse was true for mice lacking IL-22. These findings suggest that IL-22 activity reduced the E. coli population, tipping the balance of gut microbes in favor of Salmonella.

The researchers then simultaneously infected the mice with normal Salmonella as well as mutant Salmonella strains lacking cell membrane proteins for absorbing iron and zinc from the environment. Normal Salmonella strongly outcompeted these mutant strains in normal mice, but this competitive advantage was reduced in mice lacking IL-22. These findings suggest that Salmonella relies on alternative pathways to overcome IL-22's defenses and acquire essential metal ion nutrients.

Even though IL-22 does not protect against all pathogens, the protein still plays a crucial role in controlling the spread of some harmful microbes. "Blocking interleukin-22 during infection would be too detrimental to the host, so a more promising therapeutic strategy would be to specifically target the alternative pathways used by Salmonella and potentially other pathogens to evade interleukin-22's defenses," Raffatellu says.

Explore further: Typhoid Fever: A race against time

More information: Immunity, Behnsen et al.: "The Cytokine IL-22 Promotes Pathogen Colonization by Suppressing Related Commensal Bacteria." dx.doi.org/10.1016/j.immuni.2013.12.013

Related Stories

Typhoid Fever: A race against time

January 16, 2014
The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body. Prof. Dirk Bumann's research group at the Biozentrum of the University ...

Probiotic bacterium lessens severity of Salmonella infections by hoarding iron

July 17, 2013
(Medical Xpress)—UC Irvine microbiologists have learned how a probiotic bacterium used to treat irritable bowel syndrome can soothe gut bacterial infections caused by Salmonella, paving the way for potential relief from ...

Salmonella jams signals from bacteria-fighting mast cells

December 12, 2013
A protein in Salmonella inactivates mast cells—critical players in the body's fight against bacteria and other pathogens—rendering them unable to protect against bacterial spread in the body, according to researchers ...

Salmonella infection mitigates asthma

January 23, 2014
Researchers from Germany have identified the mechanism by which Salmonella infections can reduce the incidence of asthma in mice. The research, which appears ahead of print in the journal Infection and Immunity, opens up ...

How to achieve a well-balanced gut

August 8, 2013
Creating an environment that nurtures the trillions of beneficial microbes in our gut and, at the same time, protects us against invasion by food-borne pathogens is a challenge. A study published on August 8 in PLOS Pathogens ...

Recommended for you

Australian researchers in peanut allergy breakthrough

August 17, 2017
Australian researchers have reported a major breakthrough in the relief of deadly peanut allergy with the discovery of a long-lasting treatment they say offers hope that a cure will soon be possible.

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Study identifies a new way to prevent a deadly fungal infection spreading to the brain

August 16, 2017
Research led by the University of Birmingham has discovered a way to stop a deadly fungus from 'hijacking' the body's immune system and spreading to the brain.

Biophysics explains how immune cells kill bacteria

August 16, 2017
(Tokyo, August 16) A new data analysis technique, moving subtrajectory analysis, designed by researchers at Tokyo Institute of Technology, defines the dynamics and kinetics of key molecules in the immune response to an infection. ...

How a nutrient, glutamine, can control gene programs in cells

August 15, 2017
The 200 different types of cells in the body all start with the same DNA genome. To differentiate into families of bone cells, muscle cells, blood cells, neurons and the rest, differing gene programs have to be turned on ...

Scientists identify gene that controls immune response to chronic viral infections

August 15, 2017
For nearly 20 years, Tatyana Golovkina, PhD, a microbiologist, geneticist and immunologist at the University of Chicago, has been working on a particularly thorny problem: Why are some people and animals able to fend off ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.