Personalized medicine best way to treat cancer, study argues

February 24, 2014, Georgia Institute of Technology
Personalized medicine best way to treat cancer, study argues
Venn diagrams show the unique, annotated genes identified as significantly differentially expressed in the group analysis and in the personalized analysis(es) of at least 1 patient (P1: Patient 1, P2: Patient 2, P3: Patient 3, P4: Patient 4). Credit: Lili, et al., 2014.

If a driver is traveling to New York City, I-95 might be their route of choice. But they could also take I-78, I-87 or any number of alternate routes. Most cancers begin similarly, with many possible routes to the same disease. A new study found evidence that assessing the route to cancer on a case-by-case basis might make more sense than basing a patient's cancer treatment on commonly disrupted genes and pathways.

The study found little or no overlap in the most prominent genetic malfunction associated with each individual patient's disease compared to malfunctions shared among the group of cancer as a whole.

"This paper argues for the importance of personalized medicine, where we treat each person by looking for the etiology of the disease in patients individually," said John McDonald, a professor in the School of Biology at the Georgia Institute of Technology in Atlanta. "The findings have ramifications on how we might best optimize cancer treatments as we enter the era of targeted gene therapy."

The research was published February 11 online in the journal PANCREAS and was funded by the Georgia Tech Foundation and the St. Joseph's Mercy Foundation.

In the study, researchers collected cancer and normal tissue samples from four patients with and also analyzed data from eight other pancreatic cancer patients that had been previously reported in the scientific literature by a separate research group.

McDonald's team compiled a list of the most aberrantly expressed genes in the cancer tissues isolated from these patients relative to adjacent normal pancreatic tissue.

The study found that collectively 287 genes displayed significant differences in expression in the cancers vs normal tissues. Twenty-two cellular pathways were enriched in cancer samples, with more than half related to the body's immune response. The researchers ran statistical analyses to determine if the genes most significantly abnormally expressed on an individual patient basis were the same as those identified as most abnormally expressed across the entire group of patients.

The researchers found that the molecular profile of each individual cancer patient was unique in terms of the most significantly disrupted genes and pathways.

"If you're dealing with a disease like cancer that can be arrived at by multiple pathways, it makes sense that you're not going to find that each patient has taken the same path," McDonald said.

Although the researchers found that some genes that were commonly disrupted in all or most of the patients examined, these genes were not among the most significantly disrupted in any individual patient.

"By and large, there appears to be a lot of individuality in terms of the molecular basis of pancreatic cancer," said McDonald, who also serves as the director of the Integrated Cancer Research Center and as the chief scientific officer of the Ovarian Cancer Institute.

Though the study is small, it raises questions about the validity of pinpointing the most important gene or pathway underlying a disease by pooling data from multiple patients, McDonald said. He favors individual profiling as the preferred method for initiating treatment.

The cost of a analysis to transcribe the DNA sequences of exons—the parts of the genome that carry instructions for proteins—is about $2,000 (exons account for about two percent of a cell's total DNA). That's about half the cost of this analysis five years ago, McDonald said, and a $1,000 molecular profiling analysis might not be far off.

"As costs continue to come down, personalized molecular profiling will be carried out on more ," McDonald said.

Yet cost isn't the only limiting factor, McDonald said. Scientists and doctors have to shift their paradigm on how they use molecular profiling to treat cancer.

"Are you going to believe what you see for one patient or are you going to say, 'I can't interpret that data until I group it together with 100 other patients and find what's in common among them,'" McDonald said. "For any given individual patient there may be mutant genes or aberrant expression patterns that are vitally important for that person's cancer that aren't present in other patients' cancers."

Future work in McDonald's lab will see if this pattern of individuality is repeated in larger studies and in patients with different cancers. The group is currently working on a genomic profiling analysis of patients with ovarian and lung cancers.

"If there are multiple paths, then maybe individual patients are getting from alternative routes," McDonald said. "If that's the case, we should do personalized profiling on each patient before we make judgments on the treatment for that patient."

Explore further: Research shows molecular, protein targeting therapies may be best treatment for certain lung cancer

More information: PANCREAS, February 2014 DOI: 10.1097/MPA.0000000000000020

Related Stories

Research shows molecular, protein targeting therapies may be best treatment for certain lung cancer

January 7, 2014
University of Cincinnati (UC) Cancer Institute researchers have found that using therapies specifically targeting the molecular profile of non-small-cell lung cancer with the mutated cancer-causing protein KRas is the most ...

Next-generation sequencing test identified potential targets for pediatric cancer treatments

November 5, 2013
A comprehensive genomic profiling test using next-generation sequencing has identified genomic alterations in more than half of pediatric cancer samples tested that would give clinicians potential targets on which to base ...

Lung and bladder cancers have common cell-cycle biomarkers

January 29, 2014
A University of Colorado Cancer Center study published in the journal PLoS ONE shows that bladder and lung cancers are marked by shared differences in the genetics that control the cell cycle. Measuring these genetic signatures ...

'Wildly heterogeneous genes'

September 15, 2013
Cancer tumors almost never share the exact same genetic mutations, a fact that has confounded scientific efforts to better categorize cancer types and develop more targeted, effective treatments.

Discovery paves way for personalized cancer treatment

November 18, 2013
A prostate cancer researcher at the University of Alberta and his team have discovered how to improve currently available cancer drugs so the medication could be personalized for individual patients.

COXEN model picks the best drug for ovarian cancer

February 18, 2014
There are three common drugs for advanced ovarian cancer: paclitaxel, cyclophosphamide, and topotecan. Like a shell game, if you pick the right drug a patient is likely to respond. And, unfortunately, picking the wrong drug ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.