Phantom limb pain relieved when amputated arm is put back to work (w/ Video)

February 25, 2014, Chalmers University of Technology
This image shows the patient´s pain levels over the 18 weeks since treatment started. The pain was drastically reduced after a period of treatment with the new method. The patient now has periods where he is entirely free of pain. Credit: Ortiz-Catalan et al., Frontiers in Neuroscience

Max Ortiz Catalan, researcher at Chalmers University of Technology, has developed a new method for the treatment of phantom limb pain (PLP) after an amputation. The method is based on a unique combination of several technologies, and has been initially tested on a patient who has suffered from severe phantom limb pain for 48 years. A case study shows a drastic reduction of pain.

People who lose an arm or a leg often experience phantom sensations, as if the missing limb were still there. Seventy per cent of amputees experience pain in the amputated limb despite that it no longer exists. Phantom limb pain can be a serious chronic and deteriorating condition that reduces the quality of the person´s life considerably. The exact cause of and other phantom sensations is yet unknown.

Phantom limb pain is currently treated with several different methods. Examples include mirror therapy (see fact box), different types of medication, acupuncture and hypnosis. In many cases, however, nothing helps. This was the case for the patient that Chalmers researcher Max Ortiz Catalan selected for a case study of the new treatment method he has envisaged as a potential solution.

The patient lost his arm 48 years ago, and had since that time suffered from varying from moderate to unbearable. He was never entirely free of pain.

The patient´s pain was drastically reduced after a period of treatment with the new method (see image). He now has periods where he is entirely free of pain, and he is no longer awakened by intense periods of pain at night like he was previously.

The film shows: 1. The patient in the augmented reality environment, 2. when he is practising specific arm movements with a racing game, 3. when he is executing random motions requested by the computer, and 4. when he is practising combined movements in a virtual reality environment. Credit: Ortiz-Catalan et al., Frontiers in Neuroscience

The new method uses muscle signals from the patient´s arm stump to drive a system known as augmented reality. The electrical signals in the muscles are sensed by electrodes on the skin. The signals are then translated into arm movements by complex algorithms. The patient can see himself on a screen with a superimposed virtual arm, which is controlled using his own neural command in real time.

"There are several features of this system which combined might be the cause of pain relief" says Max Ortiz Catalan. "The motor areas in the brain needed for movement of the amputated arm are reactivated, and the patient obtains visual feedback that tricks the brain into believing there is an arm executing such motor commands. He experiences himself as a whole, with the amputated arm back in place."

Modern therapies that use conventional mirrors or virtual reality are based on visual feedback via the opposite arm or leg (see fact box). For this reason, people who have lost both arms or both legs cannot be helped using these methods.

"Our method differs from previous treatment because the control signals are retrieved from the arm stump, and thus the affected is in charge" says Max Ortiz Catalan. "The promotion of motor execution and the vivid sensation of completion provided by augmented reality may be the reason for the patient improvement, while mirror therapy and medicaments did not help previously."

A clinical study will now be conducted of the new treatment, which has been developed in a collaboration between Chalmers University of Technology, Sahlgrenska University Hospital, the University of Gothenburg and Integrum. Three Swedish hospitals and other European clinics will cooperate during the study which will target patients with conditions resembling the one in the case study – that is, people who suffer from phantom pain and who have not responded to other currently available treatments.

The research group has also developed a system that can be used at home. Patients will be able to apply this therapy on their own, once it has been approved. An extension of the treatment is that it can be used by other patient groups that need to rehabilitate their mobility, such as stroke victims or some patients with spinal cord injuries.

Explore further: Thought-controlled prosthesis is changing the lives of amputees

More information: Frontiers in Neuroscience DOI: 10.3389/fnins.2014.00024

Related Stories

Thought-controlled prosthesis is changing the lives of amputees

November 28, 2012
The world's first implantable robotic arm controlled by thoughts is being developed by Chalmers researcher Max Ortiz Catalan. The first operations on patients will take place this winter.

'Mirror therapy' reduces chronic phantom pain

February 22, 2012
(Medical Xpress) -- A team of researchers led by Stefan Seidel from the University Department of Neurology at the MedUni Vienna has demonstrated that – and how – mirror therapy, as it is known, can help patients ...

Gene makeup may help explain amputees' chronic pain

October 14, 2013
(HealthDay)—Soldiers with certain gene variations seem more likely than others to have chronic pain after limb amputation, a small study says.

Amputee phantom pain linked to brain retaining picture of missing limb

March 5, 2013
Changes in the brain following amputation have been linked to pain arising from the missing limb, called 'phantom pain', in an Oxford University brain imaging study.

Neuroscientists create phantom sensations in non-amputees

April 11, 2013
The sensation of having a physical body is not as self-evident as one might think. Almost everyone who has had an arm or leg amputated experiences a phantom limb: a vivid sensation that the missing limb is still present. ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
not rated yet Feb 26, 2014
The step from driving a virtual arm to controlling a prosthesis seems small. Wouldn't that be the best of both worlds to alleviate the pain and have a functioning limb?
russell_russell
not rated yet Feb 26, 2014
The perfect Ansatz ....to have the virtual arm control a prosthesis and observe what the subject can describe under what his label of 'pain' was - first with just the visual, and as comparison, with a prosthesis from the subject's same motoric signals.

A signal is a signal. This research entertains a notion that a signals' physical extension simply is not the signal's mental equivalent...as far as pain, phantom or not, is concerned.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.