How photosensitization can stop viruses from infecting cells

February 28, 2014 by Enrique Rivero, University of California, Los Angeles

A UCLA-led team of researchers has found evidence that photosensitizing a virus's membrane covering can inhibit its ability to enter cells and potentially lead to the development of stronger, cheaper medications to fight a host of tough viruses.

The UCLA AIDS Institute study, published in the February issue of the Journal of Virology, is part of ongoing research on a compound called LJ001, a "broad-spectrum" antiviral that can attack a wide range of microbes.

The current paper advances the science by showing that the process of photosensitization—heightening a biological organism's sensitivity to certain damaging processes induced by light—applies to more than just LJ001. This could pave the way for a cost-effective way to make blood products safer, which is particularly important in resource-poor countries where run rampant.

There are two categories of viruses: lipid-enveloped and non-enveloped. Enveloped viruses, including many that are of great public health concern, have a membrane that serves as a mechanism through which the microbe inserts its genome into a host cell, infecting it.

Photosensitizers, which have the ability to damage a virus's genetic material, can in many cases prevent infection, according to first author Frederic Vigant, who conducted the study as a postdoctoral researcher in microbiology, immunology and at the David Geffen School of Medicine at UCLA.

"The ability of photosensitizers to inactivate many different viruses has been known for decades," Vigant said, pointing out their well-known ability to cross-link the DNA and RNA of lipid-enveloped viruses, causing irreversible damage. "It must have seemed so obvious this was how photosensitizers work that no one ever looked in detail at the oxidation of the lipids. Oxidation of lipids by light—termed photo-oxidation—is also very well known."

For the current study, an international research team led by Dr. Benhur Lee, adjunct professor of microbiology, immunology and molecular genetics at the Geffen School, nailed down how photo-oxidation of the viral lipid envelope can be a general method for compromising the ability of such viruses to enter cells.

In an earlier proof-of-principle study published in 2010, the researchers described an antiviral small molecule—a rhodanine derivative they dubbed LJ001—that is effective against numerous viruses, including HIV-1, influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses and flaviviruses. These viruses cause some of the world's deadliest diseases, such as AIDS, Nipah virus encephalitis, Ebola hemorrhagic fever and Rift Valley fever. This LJ001 compound could also be effective against new, yet-to-be discovered enveloped , the researchers said.

In a subsequent paper published in April 2013 in PLOS Pathogens, the team found that the LJ001 broad-spectrum antiviral, and its more potent second-generation derivatives, could affect not just some but any lipid-enveloped virus via photosensitization of the envelope. It was the first time this process was identified and used as an antiviral strategy, Lee said.

The new Journal of Virology paper, Lee said, shows that this new paradigm for antivirals applies to more than just LJ001. The team examined another broad-spectrum antiviral compound called dUY11, which had been thought to act as a "wedge" by inserting itself into viral membranes and compacting the lipids, impairing fusion and entry into cells. The new research demonstrates that the process is unlikely to happen on its own because it is inactive in the dark. It turned out to behave as a photosensitizer in all the experiments they performed.

As with LJ001 and its derivatives, dUY11 enters the viral membranes, is activated by light and then changes the lipid composition of the viral coating, resulting in the inability of the virus to fuse with and enter cells.

"In other words, instead of the compound itself acting as a physical constraint on the membrane, we show that it actually works through photochemical reactions that end up changing the biophysical properties of the virus that make it unable to mediate fusion," Vigant said.

Explore further: Newly identified natural protein blocks HIV, other deadly viruses

More information: "The Rigid Amphipathic Fusion Inhibitor dUY11 Acts through Photosensitization of Viruses." Frederic Vigant, Axel Hollmann, Jihye Lee, Nuno C. Santos, Michael E. Jung, and Benhur Lee. J. Virol. February 2014 88:3 1849-1853; published ahead of print 27 November 2013, DOI: 10.1128/JVI.02907-13

Vigant F, Lee J, Hollmann A, Tanner LB, Akyol Ataman Z, et al. (2013) "A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion." PLoS Pathog 9(4): e1003297. DOI: 10.1371/journal.ppat.1003297

Related Stories

Newly identified natural protein blocks HIV, other deadly viruses

February 11, 2013
A team of UCLA-led researchers has identified a protein with broad virus-fighting properties that potentially could be used as a weapon against deadly human pathogenic viruses such as HIV, Ebola, Rift Valley Fever, Nipah ...

Potent mechanism helps viruses shut down body's defense system against infection

August 14, 2013
Researchers at the Salk Institute for Biological Studies have discovered a powerful mechanism by which viruses such as influenza, West Nile and Dengue evade the body's immune response and infect humans with these potentially ...

Hepatitis A virus discovered to cloak itself in membranes hijacked from infected cells

April 4, 2013
Viruses have historically been classified into one of two types – those with an outer lipid-containing envelope and those without an envelope. For the first time, researchers at the University of North Carolina have discovered ...

Explainer: What is a virus?

February 13, 2014
It may seem like a fairly fundamental question, but there is still debate over whether viruses should be considered a form of life.

Study identifies chemical compounds that halt virus replication

March 21, 2013
Researchers at Boston University School of Medicine (BUSM) have identified a new chemical class of compounds that have the potential to block genetically diverse viruses from replicating. The findings, published in Chemistry ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.