Protein switch dictates cellular fate: Stem cell or neuron

February 13, 2014, University of California - San Diego
Human neural progenitor cells isolated under selective culture conditions from the developing human brain and directed through lineage differentiation. Neural progenitor cells are stained green; differentiated astrocytes are orange. Nuclei are stained blue. Credit: National Institute of Neurological Disorders and Stroke.

Researchers at the University of California, San Diego School of Medicine have discovered that a well-known protein has a new function: It acts in a biological circuit to determine whether an immature neural cell remains in a stem-like state or proceeds to become a functional neuron.

The findings, published in the February 13 online issue of Cell Reports, more fully illuminate a fundamental but still poorly understood cellular act – and may have significant implications for future development of new therapies for specific neurological disorders, including autism and schizophrenia.

Postdoctoral fellow Chih-Hong Lou, working with principal investigator Miles F. Wilkinson, PhD, professor in the Department of Reproductive Medicine and a member of the UC San Diego Institute for Genomic Medicine, and other colleagues, discovered that this critical biological decision is controlled by UPF1, a protein essential for the nonsense-mediated RNA decay (NMD) pathway.

NMD was previously established to have two broad roles. First, it is a used by cells to eliminate faulty messenger RNA (mRNA) – molecules that help transcribe genetic information into the construction of proteins essential to life. Second, it degrades a specific group of normal mRNAs. The latter function of NMD has been hypothesized to be physiologically important, but until now it had not been clear whether this is the case.

Wilkinson and colleagues discovered that in concert with a special class of RNAs called microRNA, UPF1 acts as a molecular switch to determine when immature (non-functional) neural cells differentiate into non-dividing (functional) neurons. Specifically, UPF1 triggers the decay of a particular mRNA that encodes for a protein in the TGF-&Beta signaling pathway that promotes neural differentiation. By degrading that mRNA, the encoded fails to be produced and neural differentiation is prevented. Thus, Lou and colleagues identified for the first time a molecular circuit in which NMD acts to drive a normal biological response.

NMD also promotes the decay of mRNAs encoding proliferation inhibitors, which Wilkinson said may explain why NMD stimulates the proliferative state characteristic of stem cells.

"There are many potential clinical ramifications for these findings," Wilkinson said. "One is that by promoting the stem-like state, NMD may be useful for reprogramming differentiated cells into stem cells more efficiently.

"Another implication follows from the finding that NMD is vital to the normal development of the brain in diverse species, including humans. Humans with deficiencies in NMD have intellectual disability and often also have schizophrenia and autism. Therapies to enhance NMD in affected individuals could be useful in restoring the correct balance of stem cells and differentiated neurons and thereby help restore normal brain function."

Explore further: Of frogs, chickens and people: Highly conserved dual mechanism regulates both brain development, function

Related Stories

Of frogs, chickens and people: Highly conserved dual mechanism regulates both brain development, function

May 19, 2011
Researchers at the University of California, San Diego School of Medicine have uncovered new details of an unusual biological mechanism in the brains of diverse species that not only helps regulate how their brains develop, ...

Fail-safe system may lead to cures for inherited disorders

September 15, 2011
Scientists at the University of California, San Diego School of Medicine have uncovered a previously unknown fail-safe (compensatory) pathway that potentially protects the brain and other organs from genetic and environmental ...

Researchers develop powerful new technique to study protein function

June 19, 2013
In the cover story for the journal Genetics this month, neurobiologist Dan Chase and colleagues at the University of Massachusetts Amherst describe a new experimental technique they developed that will allow scientists to ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.